Saudi Chiller Commissioning

Man commissioning a chiller in Saudi wareing head gear

Saudi Chiller Commissioning

We arranged the trip to carry out Saudi chiller commissioning for our Company Director and overseas engineer Dave Thompson. 2x 500kw air cooled chillers had been positioned at high level on a gantry. These were at the back of a newly constructed building at a factory in Jeddah. The factory produces plastic water pipes used for buildings and industry. Their own pipework, produced onsite, was used for the water systems of the plant in this article.

Water System Check Valves

There are two underground water system reservoirs for the plant. A check valve is fitted below the water line on the inlet pipe feeding all of the pumps. This ensures that water is available to the pumps on start up, despite the reservoirs being below the pumps.

Saudi Chiller Commissioning of Chiller Pump Set

The chiller pump set sucks water from the underground chiller reservoir. It then discharges the water through a plate heat exchanger, then it flows up to the chillers. The chilled water then returns 5°C cooler back to the underground chiller reservoir.

Saudi Chiller Commissioning of PHE Pump Set

Another pump set sucks from the separate underground process reservoir and discharges through the other side of the above mentioned plate heat exchanger. The water is chilled by around 5°C which can be adjusted with a pressure regulating valve on the outlet of the PHE. This chilled water then returns to the underground process reservoir.

Saudi Chiller Commissioning of Process Pump Set

A third pump set also sucks from the above mentioned underground process reservoir. It then discharges up to a ring main which goes along the top of 6 lines. Then, it drains down into plastic extrusion moulding machines to cool the newly formed plastic pipe. It does this at just the right rate to prevent bending and distortion. After this, the chilled water drains at gravity pressure back into the underground process reservoir.

0161 370 7193

service@maximuschillers.com

Contact Form

Control Panels for Pump Inverters

All of the pumps run on inverter drives which saves a significant amount of electricity. These drives are located in three panels- one for each pump set. A spare inverter is available in each panel for easy switch over in the event of failure. A touch screen pump control display is fitted to each panel. Each display is wired into a PLC.

Touch Screen Central Control

The PLCs in each panel are in turn wired into a Schneider Electric touch screen central control interface. This is located on the front of the middle panel. All of the analogue sensor and transducer inputs are wired into this interface from around the plant. The underground process reservoir temperature sensor was found to be reading 4°C high, so an offset was put into the program. The digital outputs go from here to the various components around the plant.

3 Way Valve

One of these components is a 3 way valve on the plate heat exchanger. This valve regulates the percentage flow of water through the PHE, relative to the percentage of bypass to the chillers. In high load conditions, 100% of water is pumped through the PHE. With no load, 0% of water goes through the PHE with full bypass to the chillers. In a low load condition, the valve modulates at between 0% and 100%. All of these scenarios achieve a close control of 20°C in the underground process reservoir.

Saudi Chiller Commissioning of Filtration Systems

Chiller Evaporators

The chiller evaporators are protected by a ‘y’ strainer on each inlet.

PHE Chiller Side

The plate heat exchanger also keeps contaminants from the process reaching the evaporators of the chillers. This prevents the premature failure of the evaporators and also prevents heat exchange issues due to thermal insulation.

PHE and Process Bollfilter

Both of these water systems go through a Bollfilter back flush system. As the difference in pressure between filter inlet and outlet reaches a predetermined level, the back flushing operation is initiated with a green light being illuminated. This feature prevents the need to manually clean the filter at scheduled intervals. During the visit, however, these filters were overwhelmed by the residue left in the pipes and a narrow 100 micron filter size. The maximum difference in pressure was exceeded and the filtration system yellow warning light became illuminated. The filters were stripped down, cleaned and reassembled.

‘Y’ Strainer in Parallel

The factory engineer who had designed the system had the foresight to build a second filter into the water system. This ‘y’ strainer runs in parallel to the above Bollfilter and ensures seamless operation of the factory in the event of a blocked Bollfilter.

0161 370 7193

service@maximuschillers.com

Contact Form

Start Up during Saudi Chiller Commissioning

On first start up of the chillers, they were both found to be tripping on high pressure and not loading up. The chillers run on R134a which is a low pressure refrigerant in the UK. In Saudi Arabia, however, the ambient is around 40°C. This translates to an operating pressure of between 15 bar and 18 bar depending on loading and water temperature.

Loading Solenoids

Unloader switches are available on each system. These feed back to the PLC, from here the program energises the loading solenoids. They had been set to 14 bar which was the cause of the unloading issue. Our overseas engineer set the switches to 19 bar.

High Pressure Switches

He then changed the high pressure cut outs from 15 bar to 20 bar.

PRVs Checked during Saudi Chiller Commissioning

The pressure relief valves vent at 23 bar which is enough of a difference in pressure from the high pressure cut out.

Low Load Trips

Because only one line was running at the time of commissioning, one of the chillers was found to have tripped on a low temperature related trip. This fault had occurred the following morning when the water temperature had become too low due to the minimum run time of the compressors. The freeze up set point was also found to be too high at 7°C. Our overseas engineer entered a password into the front end of each chiller and modified the parameters to prevent this fault re occurring.

Full Load Testing

The water system temperature was allowed to build up to 30°C when production in the factory was offline. Then, the chillers were ran in anger until set point was achieved. An efficient superheat value of 3°C was recorded on all of the systems. This is due to electronic expansion valves being fitted. When the factory came back online, the systems were found to be off cycling or unloading to match the load.

Chiller Redundancy

Redundancy has been considered in the capacity of the chillers to allow for future factory expansion and systems being offline during repairs.

Related Articles:
Global Chilled Water System Service

To read more about chiller control systems hit the Tag at the top of the page.

Read more about Jeddah on Wikipedia | Click Here


Carel controller showing R134a refrigerant readings during preventative chiller maintenance

Preventative Chiller Maintenance

We at Maximus Chillers will optimise the efficiency and take years off the life of your plant with preventative chiller maintenance.

News Article No.9

Control Panels

The first thing our engineers check at the start of the maintenance is the control panel of the chiller. In here he checks:

Programmable Logic Controller

Alarm History

The alarm history is analysed in sequential order to build up a picture of the last maintenance period.

Settings and Timers

The various levels of password accessed menus are checked and adjusted for efficiency and to eliminate any spurious trips on the running of the chiller.

Compressor Run Hours

We make a note of the compressor run hours on our detailed Tick Sheet. Bearings on centrifugal compressors and valve gear on reciprocating compressors are changed at pre prescribed intervals as defined by the manufacturer. This is to prevent an expensive failure and the resulting remanufacturing of the compressor.

Preventative Chiller Maintenance of Electrical Safety Devices

Fuses

Each one of these is popped from its holder and the continuity checked with a multimeter. This is maintenance the right way round, instead of run testing and following the fault back to the fuse.

Circuit Breakers

Each of the breakers is tested to ensure it will function correctly when it needs to.

Residual Current Device

RCDs work by detecting current leakage to earth. It monitors the difference between the live and neutral poles. As above these are tested on each visit.

Preventative Chiller Maintenance of Refrigerant Safety Switches

High Pressure Switches

The settings and dead band (the difference in pressure between cut out and cut in) are checked and adjusted on each visit. Sometimes due to malfunctioning controls or condenser condition, fans can be manually left off or can be forced on. Not the best running condition, but we will keep you up and running until we send out the new parts. Where this is a bespoke manufactured condenser, we have the best lead time available.

Low Pressure Switches

As above, the low pressure switches are checked and adjusted as need be. The seasonal and varying load conditions affect the saturation point of the refrigerant in the evaporator. This can cause untimely trip outs when the plant is otherwise running in optimum efficiency.

0161 370 7193

service@maximuschillers.com

Contact Form

Coefficient of Performance during Preventative Chiller Maintenance

The coefficient of performance is the cooling effect compared with the electrical energy supplied to the chiller. It is represented in a ratio, for example 6:1. That is six times more cooling effect compared with the electricity supplied. The higher the cooling effect relative to electricity supplied, the lower the cost in electricity. The ratio is often divided by 1 to show as just a number- in this example 6. The cooling effect is measured in kj/kg and the electrical supply is represented in kw/h.

Latent Heat 

A chiller system would have a COP of less than 1 if not for latent heat. Exploiting this hidden heat when both evaporating and condensing the refrigerant is one of the founding principles of the basic refrigeration cycle. It takes a lot of heat added to the system to get the refrigerant to boil, then the same amount of heat is rejected from the condenser in the liquification of the refrigerant.

System Efficiency

A lot of basic things routinely drag down the efficiency of a chiller system. Just with the effect of our engineer attending site to carry out the maintenance- he will keep the COP optimised. Here are some of the system checks and procedures he carries out:

Superheat

When a compressor never goes off due to refrigerant shortage, there is a dramatic increase in electricity consumption. Also, the system will not have very much cooling effect. Continuing like this will cost more money and achieve little.

Subcooling

Basic condenser maintenance will improve the subcooling values. These readings will be taken at various load and ambient conditions at different times of the year. This is so we can build up an understanding of the plant. We carry a wide range of chemicals for the maintenance of your condenser. These chemicals are carefully selected so that they do not damage the condenser causing leaks. Condenser fans also cause a poor COP:

0161 370 7193

service@maximuschillers.com

Contact Form

Preventative Chiller Maintenance and Condenser Fans 

Basic Design

With some basic chiller designs, the chiller condenser fans come on and off forwards and backwards at different pressures. This means that when other fans have failed, or are stuck going backwards- the one on the end comes on with the higher pressure then blows to earth. This is due to the ingress of water in the year it did not run.

Refrigerant Leaks

The above design means that there are fluctuating pressures in the condenser. This causes continuous expanding and contracting of the copper tubes. These copper tubes rub against the steel frame which is holding them in place- causing reoccurring leaks. Another reason for repeated leaks on the condenser is the vibration issue of the fans banging on and off. Add into this equation a cheap, flimsy frame that develops its own resonance- you then have an un ending problem.

Preventative Chiller Maintenance with Fan Speed Controllers 

Part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere is that we can source any fan speed controller from our fast supply chain. This remedies the problem, as fan speed controllers bring all the fans on together at different speeds. Therefore, extending the lifespan of the fan and maintaining an efficient coefficient of performance.

Axial Fans

Most air cooled chillers use axial fans. They suck the air through the condenser and reject it upwards and away from the chiller. Ducts are often fitted to help this process. Scaffolding is erected to provide safe access to engineers.

Radial Fans

Radial fans are also called centrifugal fans or blowers. They are very popular in server rooms where air is blown down into a mezzanine floor and up through the racks. They are also used outside in chillers where they blow out and away from the chiller. They are usually driven by belts which require regular inspection and maintenance.

0161 370 7193

service@maximuschillers.com

Contact Form

Preventative Chiller Maintenance and R134a Refrigerant

In the photo, the controller shows R134a refrigerant and the 8.3°C of superheat as calculated by the program. This superheat may look at first to be okay, but when considering the compressor loading and expansion valve- it points towards a system issue. Our engineers diagnose if the issue is related to a component or a refrigerant shortage.

Characteristics

HFC refrigerant which has a chemical name of Tetrafluoroethane or CF3CH2F. It has low toxicity which is good for the health and safety or our engineers. It is not combustible, but other chemicals are made as a result of a fire. It is non corrosive too, which extends the lifespan of the pipework and components around the system.

Centrifugal Drop In

This refrigerant is widely used as a replacement for HCFCs, such as, R22 used in centrifugal chillers. It is only one fluid, where as the other popular HFC refrigerants are blends. These blends fractionalize in a flooded condenser or evaporator. That is to say: one or two of the refrigerants in the blend separate out and do not continue their cycle around the system. The chiller now has the wrong refrigerant circulating around the system for the application temperature. Extreme running faults follow, such as, ice on the compressor, suction pipe and expansion pipe. This is as a result of the refrigerant pressures and temperatures being outside of nominal conditions.

Global Warming Potential

A global warming potential of 1430 is considered to be high. Therefore, the refrigerant is being phased down to 21% by 2030 in line with F-gas guidelines. These guidelines are in accordance with the European Union and the Kyoto Protocol. Because of the regulations for the handling of fluorinated gas, our engineers attend college to learn how to decant the refrigerant safely. We then ship it to the recycling centre for disposal. A waste carrier note being completed each time to track the refrigerant from dispatch to disposal. Finally, F-gas leak tests are carried out and recorded on each visit. Maximus Chillers completes the picture.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Glycol Chiller Maintenance

Chilling Plant Maintenance

To read more about chiller control panels hit the Tag at the top of the page.

To watch a video about chiller efficiency and the coefficient of performance | Click Here


Carel controller and tick sheet during chilling plant maintenance visit

Chilling Plant Maintenance Visit

On this chilling plant maintenance visit, particular attention was made to compressor loading. This was to ensure that the compressors are capable of operating at 100%. With summer now here- we want the plant capable of running at full capacity.

Controller Loading Timer

On start up, the controller goes through a timer, this is to prevent the compressor from loading up too quickly, achieving set point and going off. With available load, the compressor would start back up and go into a short cycling condition. With 5 minute intervals, the controller brings System 1 screw compressor on at 25%. Then System 2 screw compressor on at 25%. In stages, the controller loads up the compressors until it matches the load.

Compressor Loading Solenoid Coils

These are 24vac. The controller sends out a run signal through the solenoid coil which magnetises the lift valve inside.

0161 370 7193

service@maximuschillers.com

Contact Form

Compressor Loading Solenoid Valves

As the valve lifts, discharge pressure oil passes through a channel and pushes the slide valve open a 25% stage. There are 4 valves for the 4 stages.

Chilling Plant Maintenance Visit at 100%

The chilling plant being maintained on this visit was now running at 100% on both systems. The system readings can easily be read by following the menu in the Carrel controller. Superheat and subcooling readings were found to be within normal operating limits. Also, a good read back was recorded on the water system.

Compressor Unloading

At the end of the day, the three way valves on the air handlers closed down according to the BMS schedule. This meant that the water was diverted away from the heat exchangers in the air handlers. This return water had not picked up any heat, so the controller started unloading the compressors. It did this through 75% to 50% then 25% until the water system was down to setpoint.

Off Cycle at Chilling Plant Maintenance Visit

The BMS stops the chiller with the remote start/ stop signal. Should the BMS malfunction, the chiller would stay off most of the night anyway. The water system pump adds heat into the water system. Therefore, every so often enough load would be available to bring one system on at 25% for a short while.

To read more about chiller compressor systems click the Tag at the top of the page.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Chilling Plant Controls Maintenance

R134a Chilling Plant Maintenance

Chiller Maintenance Checklist

Glycol Chiller Maintenance

Read all about solenoid valves on Wikipedia | Click Here


Green chiller panel with doors open, showing contactors and PCBs during water chiller maintenance

Water Chiller Maintenance

Maximus chillers provides water chiller maintenance to all kinds of machines. Some of which have kilowatt hour meters fitted. This means we can monitor the reduction in energy consumption, directly as a result of our maintenance being carried out.

Efficient Water Chiller Maintenance

Maintenance is carried out to ensure every aspect of your chiller is running efficiently. We believe our maintenance checklist is the best in the industry. It looks in detail at the running conditions of the plant, component adjustments and the parameters in the controls. The checklist is used to assess if there are problems that are starting to occur before a safety shutdown happens. Below are some of the issues that we keep on top of to increase the efficiency of your plant.

Shell and Tube Insulation

The build up of dirt acts as an insulator in shell and tube heat exchangers. These are used for the evaporation and the condensing of the refrigerant.

The Evaporator

In the evaporator, should the tubes be fouled, there will be a reduction in latent heat absorbed into the system. This will cause the plant to stay on longer and use considerably more energy. Should the tubes become considerably fouled, the chiller will malfunction and eventually system shutdown will occur.

The Condenser

In a shell and tube condenser, the reverse of the above will occur. Tube fouling, acting as an insulator, will prohibit the rejection of heat from the system. The head pressure control will open the condenser controls to try and assist in heat rejection. Heavy fouling will cause an increase in the consumption of energy. Eventually a safety shutdown will occur causing loss of production.

0161 370 7193

service@maximuschillers.com

Contact Form

Compressor Loading during Water Chiller Maintenance

If the loading of the reciprocating compressors is faulty, the plant will not be able to effectively match the load.

Over Loading

Too much loading may occur, causing the water chillers to achieve set point too quickly. The plant will then go through the off cycle. This means that the plant will have to load back up, using more energy than matching the load continuously.

Under Loading

Should the plant be unable to load up to the required level to match the load, this will cause the water temperature to creep up and the lag chillers being called for to match the load. More chillers running than necessary dramatically increases energy consumption.

Related Articles:
R134a Chilling Plant Maintenance

Air Cooled Chiller Planned Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Chiller Maintenance Checklist

Planned Preventative Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

Visit the Refcom site to read about leak checking during water chiller maintenance | Click Here


Translate