Chiller Maintenance Service

Chiller maintenance service Tick Sheets showing readings

Chiller Maintenance Service

Maximus Chillers have just carried out our quarterly chiller maintenance service at a factory in the North West. We look after 6MW of cooling across 12 industrial process chillers. This was a minor visit, so no need for oil changes and checking the head gear on the reciprocating compressors. Instead, we took oil samples which we analysed in our laboratory. Read on for an insight into our engineer’s findings on each of the chillers…

News Article No.25

Chiller 1 Maintenance Service

System 1 has a compressor that had blown all three of the 200 amp centred tag fuses. On inspection with a multimeter, our engineer found a dead short to earth on the internal electric motor. We have submitted a Quote for the lift and shift, remanufacturing at our facility, then the lift back in. Several oil changes will then be carried out at planned intervals.

Chiller 2

More or less textbook readings were taken and no problems to report.

Chiller 3 Maintenance Service

Slightly poor readings were taken on the low side of all 4 of the systems. This issue has now been flagged in our system for monitoring. If it deteriorates, we will submit a Quote to take the evaporator end plates off and carry out a chiller tube cleaning operation.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller 4 Maintenance Service

Compressor 3 has had an issue that has been developing over a period of time. Occasionally, it throws the breaker, then when the electrical readings are taken- they all check out okay. The contactor condition had been inspected, the wiring and motor connectors had all been tightened up too. Shortly before the visit, our customer rang to say “Chiller 4 has gone for a Burton!” When we attended the call out, we found the contactor had blown against the inside of the panel. We have submitted a Quotation for the replacement.

Chiller 5

System 2 had a flashing sight glass in some conditions, but the other fridge readings were okay.

Chiller 6

This system had low side readings similar to Chiller 3. Again, they were not deemed to be an issue yet, but if we decide to do a chiller tube cleaning operation, we will prepare one Quote for both chillers.

Chiller 7

No problems to report.

Chiller 8

Only a short run was available due to the process load conditions, but no problems were found by our engineer.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller 9 Maintenance Service

All the way through to chiller 9 and the fault finding was easy, now this: external interlock alarm. When our engineer logged the issue with our Technical Support Desk using our real time app on his phone, he stated that to his knowledge, there were no external interlocks.

Fan Motors

Therefore, he decided to check the fan motor overload switches. All 5 fans on each system are linked together in series, so he looked for the volt feedback in the panel for System 1 and System 2- this checked out okay.

External Switch

Therefore, he decided to look for an external switch as the fault suggests. He walked along the gantry and down into the plant room below the chillers...

Pump Set Panel

There is a panel that controls the chilled water pump sets. No wire from the chiller was found to go into this panel.

Remote Monitoring Panel

This is a display that conveys the running condition of the chiller down to the plant room below. It saves a process engineer from having to go up the stairs and onto the chiller gantry. This panel is indeed connected to the chiller with electrical wiring. However, no switch was found that could have caused this fault.

Buffer Vessel

A 10,000 ltr buffer vessel is also located in the plant room. As it is open to atmosphere, our engineer looked for a low level switch which may have tripped- no switch was found.

Program Settings

Now that anything external to the chiller had been eliminated, our engineer decided that the fault must indeed be coming from inside the machine. Because the fan overloads had checked out okay, he decided to have a look at the program settings...

Extensive Library

We have an extensive library of manuals and passwords for all chillers. We also have a network of engineers around the country- one of them will know someone who will has a manual or password. When our engineer contacted our Technical Support Desk real time through his app- the manual and passwords were sent to his phone. He found the menu level and parameter for external interlocks which was found to be wrong. To our knowledge, our customer does not have the password for this chiller. The process had been off for some time due to system upgrades with contractors on site doing other work. They could have changed the setting for some reason. We don’t know- but at least the setting was corrected and the chiller came out of fault.

Chiller 10

This chiller uses belts to drive the fans. On inspection, several of them were found to be in poor condition or broken off. We have just replenished the stock of spare fan belts on site, so our engineer replaced them, then tested each fan motor in turn.

Chiller 11

This is the same make and model as Chiller 10. The same issue was found and then rectified.

Chiller 12 Maintenance Service

This chiller is in a part of the factory where the environment is very dusty. Therefore, a blocked condenser and high pressure cut outs are common place. The process engineers are aware of this issue, so they keep on top of the maintenance of the condenser. If the condenser does deteriorate- they know how to reset the fault. No problems were found with this machine.

Related Articles:
Glycol Chiller Maintenance

Planned Preventative Chiller Maintenance

Chiller Maintenance Contract

Hit the Tags at the top of the page to navigate your way to our extensive library of further reading on this subject.

Read more about buffer vessels at Fabricated Products.


Troubleshooting of a chiller panel on a system running on ammonia refrigerant

Chiller Troubleshooting

In this article a bespoke chiller with ammonia refrigerant is having troubleshooting carried out to identify the faults. Read below to have a look into the various issues that commonly occur on this machine…

News Article No.19

Chiller Troubleshooting of Low Oil Level

There are times when this machine experiences a low load condition. This is because another chiller is also available as well as free cooling.

Building Management System

The BMS regulates the sequencing of the chillers, the pump sets, the water system valves and the free cooling. We found after troubleshooting that, especially in the winter, the BMS can be slow to react. This causes the chiller to continue running with low load.

Slide Valve at 0%

During a low load condition, the compressor has been designed to run with the slide valve at 0% to prevent too many start ups. These start ups would cause a higher amount of electricity to be used because of the amps being drawn to get the compressor going. Although the compressor uses star/ delta contactors which are a soft start, the repeated starts would still draw a lot more amps. Therefore, the compressor continuing to run at 0% is a lot more efficient.

Oil Pump and Oil Level

When this condition occurs, however, the oil pump continues to suck and then discharge the oil. Eventually, the level in the oil separator drops to below the oil level switch and the alarm is triggered. The photo shows this switch which is a float on a stem. The circuit is completed when the float is at the top of the stem. When the float slides down the stem- this triggers the alarm.

Stainless steel oil level switch removed from the chiller showing the float and the stem
The switch protects the compressor

The Repair

Specialist ammonia resistant personal protective equipment, or PPE is donned by our engineers. Then, ammonia grade oil is pumped in so as to complete the circuit of the switch. After a start up, the same amount of oil has to be taken back out at the other end of the system using the dead man’s valve. This is a valve on the bottom of the economizer which shuts by itself using a spring.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Troubleshooting of Oil Filter Differential

When this alarm occurs, you can see the discharge pressure remain at 8 bar and the pressure after the oil filter slowly drop off to less than 6 bar. When interrogating the program, the oil pressure differential trip out is set to 2 bar. After this differential is exceeded, a timer starts to prevent spurious trip outs occurring if the differential pressure is exceeded momentarily. If the differential pressure continues to be exceeded after the timer has timed out- the machine goes into a fault condition which needs a manual reset.

Chiller Troubleshooting Inspection

When removing the cover for the compressor enclosure, the discharge oil pipe can be seen going into the oil filter. An oil pressure transducer can be seen on the far side of the filter.

Contaminants

After the above troubleshooting, it was found that with this kind of system, the oil becomes contaminated with sludge and debris from around the system. Over time this builds up behind the oil filter and so causes the trip out.

The Repair

The repair requires the oil filter to be valved off on either side. Then, full length PPE suitable for the handling of ammonia is required along with beathing apparatus. Each of our engineers carries a portable ammonia alarm and state of the art ammonia handling equipment. We also produce our own ammonia oil filters which we keep on the shelf at Head Office. Give our Technical Support Desk a bell for further assistance.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Troubleshooting of Slide Valve Potentiometer

This is a 4-20mA sensor which detects the position of the slide valve. 4mA being shut and 20mA being open. We attended a call out to troubleshoot the alarm message of “slide valve failed to reach the closed position” There is a spring on the end of the slide valve which is used to push it to the closed position when the compressor is off. We decided to activate the drain and fill solenoids which are used to open and close the slide valve. Still the same fault persisted. Having decided that the slide valve was indeed at its closed position, we decided to calibrate the closed and also the open position of the valve.

The Repair

The compressor was valved off and our engineer donned the necessary PPE. The sensor stem was removed from the end of the spring which is attached to the slide valve. A lock nut is available to hold the stem at the required position. This was found to have vibrated loose and so causing the problem. The correct length was set on the stem and the lock nut was re tightened. After rebuilding the end of the compressor, the valves were opened and the compressor checked for leaks. Then, the system was run tested using the manual load and unload buttons on the controller. A good read back was recorded and the machine went into seamless operation.

Chiller Troubleshooting of Ammonia Leak Detection System

This device is stand alone from the chiller and has its own uninterruptable power supply. This UPS is needed so that when there is a power failure to the building, the alarm would still function. There are 2 toxic gas sensors and 2 fire detectors fitted in different locations on the chiller.

Out of Calibration

When we took over the contract 5 years ago, the chiller had been in fault for some time with a leaking shaft seal. After troubleshooting the problem, we found that the small amount of ammonia leaking from the shaft seal and onto the sensor had knocked it out of calibration. This is because the sensor needs to be calibrated to a zero ammonia atmosphere as a reference point.

The Repair

After changing the shaft seal, we decided to change all 4 of the sensors and plug the detection system into our laptop for calibration. The benchmark was set for each sensor, then each sensor was bump tested to the required parts per million of ammonia to ensure that the detector trips when it should. All read backs were found to be okay, so we completed the calibration certificate which the customer keeps in his chiller file.

Related Articles:
Industrial Refrigeration Oil

Industrial Chiller Maintenance

Industrial Refrigeration Ammonia

Industrial Refrigeration Sludge

Chiller Maintenance Contract

Hit the Tags at the top of the page to navigate your way to our extensive library of further reading on this subject.

Watch a video about chiller faults troubleshooting from The Engineering Mindset on Facebook


Showing how do chillers work with pipework of black centrifugal compressor

How do Chillers Work? Compressors

How do chillers work, this time focusing on compressors. Read below and we will explore the subject in detail…

The compressor can be seen as the heart of a chiller system. As explained in the last article in our Chiller Basics series: it enables the principle of the pressure temperature relationship to take place and circulates the refrigerant.

Evaporator

The sucking action of the compressor drops the pressure in the evaporator. This lower pressure, corresponding to a lower temperature, enables the refrigerant to boil off, absorbing latent heat from the process. The refrigerant, laden with heat energy, is then sucked into the compressor.

Condenser

The refrigerant is discharged from the compressor at a high pressure, relative to a high temperature, this is sufficiently above atmospheric temperature to enable the latent heat in the refrigerant to exchange into the surrounding air.

How do Chillers Work - Mass Flow Rate of Compressors

Compressors enable the refrigerant to flow around the system. The higher the pressure of the refrigerant, the higher the mass and so the higher the mass flow rate. In low temperature systems that run on a vacuum, a very large compressor is needed to achieve the required mass flow rate and so to cool the process.

Below are the 4 main types of compressors and how they work…

0161 370 7193

service@maximuschillers.com

Contact Form

How do Chillers Work - Scroll Compressors

This compressor is more often found on smaller chillers. Scroll is another way of describing a spiral. There are two spirals, one inside the other. One of them is fixed and the other one orbits. This creates crescent shaped gaps in between the two spirals. The volume of these crescent shapes gets smaller towards the middle of the spirals and so compresses the refrigerant. The refrigerant is then discharged through a port at the middle of the scrolls.

Maintenance

Scroll compressors are meant to be maintenance free as they are hermetically sealed with no moving parts on the outside. However, the correct amount and sufficient quality of lubricating oil must be maintained to prolong its life. A lack of routine maintenance by a chiller company causes frequent compressor failures and also allows acid to accumulate in the system. This acid causes further compressor failures to occur. Give us a bell and we will put together a tailor made maintenance schedule to prolong the life of your plant.

How do Chillers Work - Reciprocating Compressors

Small

These compressors can be small and used for low capacity applications. The motor is usually inside the compressor with the cylinder heads being removable. This is described as being a semi hermetic compressor.

Large

Reciprocating compressors can also be very large and often arranged in multiple compressor systems for high capacity applications. They are open drive when used with ammonia refrigerant which means that the motor is external from the compressor. This is because ammonia corrodes the copper windings of the motor.

How They Work

The circular motion of the crankshaft is converted into the linear motion of the connecting rods and pistons running up and down inside the cylinders- see a video of how they work. Another way of describing back and forth linear motion is reciprocating. The refrigerant is sucked into the cylinder on the down stroke and then the suction inlet valves are closed. The trapped refrigerant is compressed on the up stroke and then the discharge valves are opened when the piston reaches the top of the cylinder.

Maintenance

Reciprocating compressors need regular maintenance and strip downs at pre prescribed intervals. Failure for this to be carried out results in internal components becoming worn or loose. This imbalance in the compressor causes further wear and damage to take place. Eventually something like a piston comes loose and a compressor smash up occurs. The damage is usually limited due a low oil pressure condition occurring from the location of where the part came loose. Sometimes, however, parts of the connecting rods stay attached to the crankshaft which flail around inside the compressor. An example of this is when a compressor we rebuilt had carried on running on the last one of its 8 cylinders. The rest of the internal compressor components were reduced to small, triangle shaped pieces of metal in the sump. Our maintenance saves money!

0161 370 7193

service@maximuschillers.com

Contact Form

How do Chillers Work - Screw Compressors

A pair of matched helical rotors are machined to a high tolerance. One of them is driven by a motor and the other one interlocks with it. The gap between the rotors gets smaller as the refrigerant continues down the screw and so compression is achieved. Oil is injected into the screw to provide a seal, to lubricate and to cool the rotors.

Maintenance

This type of compressor is very reliable and can quite often out live the chiller. The components around the screw, however, require regular maintenance and replacement to enable the compressor to function effectively. Some of these components include the loading solenoids and coils, also the slide valve and its potentiometer which senses its position. When these components are not working as they should, the compressor cannot match the required load and so excessive electricity consumption occurs. The inspection, adjustment and replacement of these components is another way of how our maintenance saves money.

How do Chillers Work - Centrifugal Compressors

These compressors are mostly found on very high capacity systems used for the cooling of large industrial processes, district cooling and the cooling of large facilities. The compressor in the photo, however, is a small centrifugal compressor used for the cooling of a building.

How They Work

The refrigerant is sucked into the middle of the impellor. Then, centrifugal force pushes it out to the tip of the impellor edge and so providing the compression. Unlike the compressors above, these compressors are not positive displacement and so they have a lower compression ratio. That is to say: a lower difference in pressure between the suction and the discharge.

Maintenance

Regular oil and filter changes are required to prolong the life of the bearings. When this kind of compressor fails due to worn bearings and damaged internal components, the rebuild is extremely expensive. Read more about our centrifugal compressor remanufacturing facility

Related Articles:
Scroll Chiller Compressor Maintenance

Reciprocating Chiller Compressor Maintenance

Screw Chiller Compressor Maintenance

Centrifugal Chiller Compressor Maintenance

How do Chillers Work? Expansion Valves

Chiller Repair Service

Hit the Tags at the top of the page to navigate your way to our extensive library of further reading on this subject.

Read more about types of compressors on the Carel website


Grey centrifugal chiller compressor being maintained

Centrifugal Chiller Compressor Maintenance

Centrifugal chiller compressor maintenance keeps your critical plant up and running and your customers happy. The work can be scheduled to be carried out during factory shutdown, so as not to disrupt your production. We can also carry out this work to your compressors while the factory is in production. This is achieved by isolating the compressor that needs to be worked on when it is in an off cycle. The compressors on remaining machines can carry on running.

Tasks during Centrifugal Chiller Compressor Maintenance

Here are some of the tasks that we carry out…

Oil Changes

The oil becomes dirty over time by picking up contaminants that have formed in the system. Two of these contaminants are…

Acid

Compressor discharge is the hottest part of the refrigerant cycle. Acid can be formed from the refrigerant in this part of the system.

Refrigerant Types

A popular refrigerant for centrifs is R134a. Because it consists only of one kind of refrigerant, it does not fractionalise into different component refrigerants. This would be no good for a flooded system because one or more of the refrigerants would end up in the bottom of the evaporator and condenser. The remaining refrigerant would circulate and the whole plant would not function as it should. Refrigerants popular for other kinds of system are zeotropic HFC refrigerants. This means that the different component refrigerants have different boiling points- R407c is a good example.

Metal

White metal from the compressor and copper from the heat exchangers end up in the oil. They will eventually be caught by the system oil filters…

Oil Filter Change

After completing the above, now is a good time to change the filter as the compressor is valved off and has been broken into. It is also when an oil sample is taken depending on the schedule…

Oil Samples during Centrifugal Chiller Compressor Maintenance

Our oil samples are transported using our specialist kits which include the bottles and labels. This saves mix ups in our laboratory during the analysis.

Leak Rectification

The drawback of carrying out the above are leaks because the pressure has been pumped out of the compressor into another part of the system. The ‘o’ rings and shaft seal can now leak, this kind of failure can be rectified whilst still on site by the knowledge of our engineers.

0161 370 7193

service@maximuschillers.com

Contact Form

Oil Pre Lubrication

When the compressor starts, the oil pressure is built up first using an oil pump. This is so the internal components such as the high and low speed shaft are properly oiled before they start to rotate. They can run at 10,000 RPM and are very expensive to replace. Therefore, we check the oil pressure gauges and the system controls to ensure optimum ‘pre lubing’ of your compressors.

Volumetric Efficiency

The ratio between the volume actually compressed and the theoretical volume derived from compressor design calculations. This kind of compressor has a lower volumetric efficiency than positive displacement compressors. It is because the refrigerant is compressed off the tip of the rotating impellor or impellors. The refrigerant moves outwards in a circular path due to centrifugal force. A centrif more than makes up for this lower volumetric efficiency by the high mass and volume of the refrigerant that it circulates around the system.

Design 

The refrigerant is sucked from the evaporator into the centre of the impellor which is a disc of radial blades positioned to direct the refrigerant outwards. Due to the low differential of pressure, multiple stages of impellors are often arranged in series with the discharge being directed onto the suction of the next impellor. This is simple in design with less moving parts than some other compressor types. Modern centrifs can have magnetic, levitating bearings and so remove the need for oil in the system altogether. The faster the speed, the better the efficiency- so high speed rotation of the impellor is achieved at full load. The compressed refrigerant is discharged into the condenser.

0161 370 7193

service@maximuschillers.com

Contact Form

Electric Drive Centrifugal Chiller Compressor Maintenance

Most modern centrifs are driven by variable speed drives. This is for efficiency as the load can be exactly matched. Another reason for this is to soft start the compressor. 415v and 3.3kv are popular volt inputs, although other voltages can be made available by the onsite transformer.

Open

An open drive electric motor is the most popular design. It has the drawback, however, of needing a shaft seal which needs to be replaced at periodic intervals. This shaft seal is also prone to leaking refrigerant and oil.

Semi Hermetic

The photo is of a semi hermetic design of this compressor type. The motor is contained inside the suction housing and so has the benefit of being cooled by the refrigerant. No shaft seal is needed and therefore it has none of the associated maintenance drawbacks.

Steam Drive Centrifugal Chiller Compressor Maintenance

On oil rigs there can be an abundant supply of steam that can be used to drive the compressor. It is often used on multi stage compressors which are used for the liquefaction of natural gas. The steam goes through a turbine which is connected to a shaft- this drives the impellors. The steam flow and pressure can be tested and adjusted during the visit.

Woops Something Went Wrong

When you suffer a centrifugal compressor failure- don’t worry. You are in safe hands with the team here at Maximus Chillers. We have a team who can get the compressor out and lift it to the workshop on site, or transport it to our Head Office. We have another team who are experts in the remanufacturing of this kind of compressor. A fast supply chain is in place for delivery of the internal moving parts, gaskets and bearings. We are so confident that you will be happy with us- we offer a 12 month warranty on all of our compressor rebuilds.

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Chiller Controls

Scroll Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

To read more about centrifugal chiller compressors hit the Tag at the top of the page.

Read more about centrifugal compressors on The Engineering Mindset

 


Green Bitzer screw chiller compressor with oil separator removed on bench in our workshop

Screw Chiller Compressor Maintenance

Open Drive Screw Chiller Compressor Maintenance

Open drive screw chiller compressor maintenance involves changing the shaft seal at intervals, or if it leaks. This kind of compressor is used with ammonia as this refrigerant corrodes the copper windings and the insulation. It is also used with most large HFC (hydrofluorocarbon) and HFO (hydrofluoroolefin) chillers.

Semi Hermetic Screw Chiller Compressor Maintenance

Because all of the components are internal, this kind of compressor needs less maintenance. It is most often used with smaller chillers running on HFC and HFO refrigerants. This is the compressor type featured in the photo.

Matched Helical Rotors

This kind of compressor design uses a matched pair of helical rotors. These are accurately machined so as to trap, then compress the refrigerant as it travels along the screw. Oil injection is used to create a seal between the rotors. The two rotors are different in shape: the male rotor is driven by the motor and usually has 4 lobes. The female rotor meshes with male and usually has 6 interlobe spaces. The cylinder casting around the rotors is equally important as it seals in the vapour along the screw. Both rotors are helixes with the male rotor moving more rapidly. This compressor design provides a continuous pumping action, rather than pulsating as with a reciprocating compressor. Another advantage of this kind of compression is that there is very little vibration. Indeed, you can place a coin, on its side, on top of the compressors we look after and it does not fall over. This lack of vibration helps to prevent refrigerant leaks around the compressor.

Single Screw with Gate Rotors

This kind of compressor design uses one main rotor, meshing with 2 star gate rotors. These are at right angles with the main rotor. The main rotor usually has 6 grooves.

0161 370 7193

service@maximuschillers.com

Contact Form

Screw Chiller Compressor Maintenance and Reliability

Both of these compressor designs are very reliable with a long bearing life. A maintenance free lifespan of 30 years for the bearings is not uncommon. It is quite common that the compressor will outlive the chiller. In the unlikely event of bearing wear, a characteristic is for there to be undue noise from the compressor at part load which goes away at full load. Higher oil temperature and an unsatisfactory oil analysis are also indicators.

Slide Valve

The capacity is seamless as it is regulated with a slide valve. A spring returns the valve to the unloaded position and a gear type oil pump gives above discharge pressure to load it. The oil pump is not for lubrication, it is just to give the valve enough force to slide with the discharge pressure acting against it. A slide valve potentiometer is fitted to a sliding rod on the end of the valve. It translates the movement along this rod into usually 4-20mA. This signal feeds back to the controller which converts it into a percentage loading reading.

Lubrication during Screw Chiller Compressor Maintenance

Pressures and temperatures are taken during the maintenance to ensure seamless operation. The oil sump is usually inside the base of the oil separator which is at discharge pressure. An oil return pipe is available from the oil sump to the suction side of the screw. Because of the pressure difference from discharge to suction, the oil naturally lubricates the compressor without any need of an oil pump. The oil lubricates the bearings and is injected with the refrigerant along the screw. This provides a seal between the rotors or gate rotors, it also lubricates the rotors to prevent excessive wear.

Oil Separator

The oil enters the oil separator after being discharged with the refrigerant from the compressor. This vessel is insulated so as to stop refrigerant condensing inside as it would in the condenser. An oil heater keeps the oil at the optimum temperature for the compressor. This heater also prevents liquid from forming in the oil separator during off cycles. A check valve on the outlet also prevents this from happening by stopping the migration of refrigerant from the condenser. As the oil sump is the oil supply to the compressor, a temperature sensor will make the program lock the compressor out, should the oil be too cold. This is usually because the main power supply to the chiller has been off during maintenance. The larger volume inside the oil separator slows the speed of the refrigerant so as to allow the oil to drop out. A common design is for the discharge to be directed to the top of the vessel, with a spiral going down to the sump. The oil falls out of the refrigerant vapour during this process. For additional oil recovery, the oil goes up through finer and finer layers of mesh. The oil sticks to this mesh and runs down into the sump.

0161 370 7193

service@maximuschillers.com

Contact Form

Oil Return

Small amounts of oil that have escaped the oil separator will end up in various vessels around the system. On smaller HFC systems there is less of a problem as the oil is entrained by the refrigerant, round the system and back to the compressor. In larger, flooded HFC systems, the oil mainly ends up in the bottom of the evaporator. For ammonia systems, the oil does not entrain with the refrigerant, so oil return devices must be used.

Eductor

This is a pot at the bottom of the vessel where the oil collects. At periodic intervals, discharge gas is blown across the top of the oil which has collected. This has the effect of picking it up and carrying it into the suction of the compressor.

Periodic Oil Changes

We at Maximus Chillers have the full range of refrigerant grade oil for all refrigerant types. It is part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere. It is critical that the correct oil is selected otherwise compressor failure will result. During each maintenance visit, we make a note of the compressor run hours and carry out oil changes at the correct intervals.

Oil Analysis

We take oil samples which we analyse in our laboratory for signs of compressor wear, oil quality and contaminants. This way, we can prevent untimely compressor failure. If one of your compressors were to fail, however, we have a remanufacturing facility and a lift and shift team to get the job done fast! 

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Scroll Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

To read more about screw chiller compressors hit the Tag at the top of the page.

Read more about rotary screw compressors on Wikipedia


Chiller compressor failure of blue Grasso in enclosure

Chiller Compressors

System Testing for Chiller Compressors

Chiller compressors fail often as a result of ineffective servicing and system testing. At Maximus Chillers, we carry out extensive tests during our visits to ensure that small problems are resolved before they become big problems. If we notice a reading starting to become abnormal, we can carry out the diagnosis and then remedy the problem. Some of the compressor readings we monitor are:

Temperature of Chiller Compressors

The suction, discharge, motor windings and bearing temperatures are recorded for comparison to previous visits. These are often available in the PLC for the chiller, or our engineer can take the readings with his test equipment. Problems with the oil cooler can be the cause of higher compressor temperatures, the system running outside of its nominal operating conditions is another reason. Magnetic drive systems have an advantage as they do not use oil.

Accelerometer

Portable vibration sensors are carried in of each of our company vehicles. This is an accelerometer to measure vibration. Along with other system readings, we keep an on going record of the vibration levels around the compressor. When internal components are coming out of alignment due to wear, this causes an out of balance condition in the compressor. This, in turn, causes a knock on effect- causing other components to go out of balance. Catching this condition early will prevent a compressor smash up resulting in the replacement of expensive internal components.

Oil Analysis for Chiller Compressors

Another way of preventing big problems from occurring is periodic compressor oil testing. Samples are taken, usually on alternate visits, which are sent off to a laboratory for analysis. The acid level is tested to provide pre warning of a potential compressor motor windings burn out. This is because acid in the compressor oil rots through the electrical insulation on the motor windings. The presence and quantity of white metal and yellow metal is analysed too. This is a window through to a component starting to wear inside the compressor.

0161 370 7193

service@maximuschillers.com

Contact Form

Screw

The compressor in the photo is a screw compressor. It operates with ammonia refrigerant. This refrigerant is usually used for low temperature applications, mainly associated with food production. This compressor, however, has a 1°C refrigerant saturation and is used to cool computer rooms. Common causes of compressor failure on this kind of compressor are:

Leaking Castings on Chiller Compressors

The various compressor components are sealed together using ‘o’ rings or paper gaskets. ‘O’ rings are especially prone to leaks due to work hardening and flattening of the sealing face. The system can be pumped down and the compressor valved off. Then, our lift and shift team can remove the compressor to our remanufacturing facility for strip down.

Leaking Shaft Seal

The mating surface of a shaft seal has a mirror smooth finish. This is to reduce friction and aid with a better seal. Over time, this starts to wear, causing an ineffective seal with a leak of refrigerant and oil. A service visit can be arranged to change the shaft seal on site. The shaft couplings can be split, the shaft seal can then be removed and replaced. A quick job, then the machine is up and running again.

Slide Valve Potentiometer

This is an electronic device with a slide attached to the moving compressor slide valve. The device has a start and an end position programmed into it during commissioning. The potentiometer converts the slide valve position, usually into a 4-20mA signal which is fed back to the chiller PLC. They are prone to reading out, or the reading being jammed in one position. This results in a trip out from the controls, as the controller is not able to determine the true position of the compressor slide valve. We have an off the shelf stock of slide valve potentiometers for the various compressor range. A service visit can be arranged to replace the part after diagnosis has been carried out. The controls operate the loading and unloading solenoid valves to change the position of the slide valve.

0161 370 7193

service@maximuschillers.com

Contact Form

Centrifugal

Centrifugal compressors are a very reliable kind of compressor but when they go wrong, they can go wrong in a big way. Compressor overhaul is expensive, this can be carried out onsite, or a better option is a lift and shift to our remanufacturing facility. Proximity sensors are usually fitted to monitor the distance between the impeller and the casting. This is an added protection along with the other sensors and transducers around the compressor.

MCS

We are on account with Micro Control Systems- an American company who specialise in building panels to order for specific chiller compressors. We easily fit this control system to any compressor to control the loading of the vanes in accordance to the available load from the process. The control panel has previously been fitted to other machines of the same model number, so any teething issues have already been ironed out. Maximus Chillers can achieve seamless operation of your plant.

Oil System for Chiller Compressors 

Newer centrifugal compressors are oil free so as to eliminate any of the service issues relating to oil. There are a substantial amount of compressors, however, that use oil to lubricate the bearings. This kind of compressor, if properly serviced, can last for 50 years. The oil system picks up impurities which are caught by various filters. These filters can be changed or cleaned according to the prescribed service schedule. Our engineers make sure that spares are ordered and kept onsite prior to a visit.

Cost Effective

Our visits and ongoing upkeep of your plant saves money. Money spent as a preventative measure saves so much more money in the long run. With competitive prices on specialist internal centrifugal compressor parts- Maximus Chillers completes the picture. When compressor failure occurs, you are in safe hands with years of industry experience invested in each of our engineers.

0161 370 7193

service@maximuschillers.com

Contact Form

Scroll

These are some issues affecting a scroll compressor:

High Discharge Pressure

With high discharge pressure, there is a corresponding increase in discharge temperature. This means that the compressor is operating beyond its recommended values. The cause of this is often a poorly maintained condenser. Especially on industrial chillers, there can have been gaps in the schedule where the condenser was not correctly serviced. This condition is often rectified easily by an onsite engineer by giving it a brush down. Where the fins are bent over- we carry a specialist tool to straighten them back out- how they came out of the factory. We also use different formulas of chemicals to rinse the various kinds of dirt from deep within the fins.

High Suction Pressure on Chiller Compressors 

Some chillers are used where very high water temperature can come back from the process if the chiller were to be off line for a short period. Usually, this happens in factories where certain industrial processes are being carried out. When the onsite engineers start the plant back up, the chiller experiences a high heat load to deal with.

MOP Expansion Valves

Maximum operating pressure expansion valves limit the pressure in the evaporator to a given level, regardless of the available heat load from the process. They do this by having a limited amount of liquid refrigerant in the bulb. When this runs out, the power element cannot push the orifice open any further- thus limiting the suction pressure. This is important to prevent scroll compressor failure as it prevents putting added strain on the compressor motor windings due to high suction pressure.

Oil and Refrigerant Shortage

Where there is a shortage in refrigerant, there follows a low oil level condition. The refrigerant mass flow rate carries the oil around the system and back to the compressor. This is greatly impaired when the chiller is short of gas. The oil cools the compressor and lubricates the shaft bearings. These bearings and other internal components wear down and seize causing failure. Maximus Chillers can put together a package to minimise chiller compressor failure.

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Screw Chiller Compressor Maintenance

Chiller Parts Supplier

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Scroll Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

How Do Chillers Work

To read more about scroll chiller compressors hit the Tag at the top of the page.

Read more about impellers which are used in centrifugal compressors at Wikipedia


An engineer filling blue oil drums during industrial chiller maintenance

Industrial Chiller Maintenance

Reciprocating Compressors

Industrial chiller maintenance including a reciprocating compressor with 8 cylinders. They always have an even number of cylinders so that the compressor is balanced.

Open Drive

Because the refrigerant being used in this article is ammonia, the compressor is open drive. This is because ammonia corrodes the copper windings of the electric motor. An open drive compressor needs a shaft seal to prevent oil and refrigerant escaping from the system. These shaft seals are prone to wearing down and leaking. They have two mating surfaces that have a finish so smooth that it is like glass. Any oil leaking out of the system collects in a pot. This pot is monitored for the rate at which it fills up and so the deterioration of the shaft seal can be monitored. The swap out of the shaft seal can be arranged at a convenient time. This evolves the splitting of the shaft coupling to allow access to the seal.

Semi Hermetic

This means that the electric motor is internal to the compressor. Hermetic meaning sealed and semi meaning that you can bolt components off, such as, the cylinder heads. There is a significant advantage with this type of compressor design as there is no shaft seal. The compressor motor windings are also cooled by the suction vapour returning to the compressor from the refrigerant system. This compressor design is used with HFC, HFO, CO2 and Propane refrigerants. There are some semi hermetic compressors that are suitable for ammonia where the windings have been sealed from the refrigerant.

Scheduled Strip Down

This kind of compressor has a lot of moving parts that need to be replaced according to the run hours of the compressor. Failure to do so will lead to the compressor going out of balance and an expensive compressor smash up occurring. Usually during a smash up, a connecting rod will fly off causing oil to spurt out from the gallery. This causes a low oil pressure fault which stops the machine. One smash up which I have seen involved all the con rods staying on and flailing round the inside of the compressor. One cylinder was still working, the compressor still running and a sump full of different sized triangle pieces of metal! This highlights the importance of scheduled maintenance.

0161 370 7193

service@maximuschillers.com

Contact Form

Major Industrial Chiller Maintenance 

On a recent Major maintenance visit, the scheduled oil change was carried out. The required oil being selected by our oil analysis process to the correct viscosity for a Grasso reciprocating compressor operating at a 1°C saturation.

Oil Drain Out during Industrial Chiller Maintenance

The compressor was valved off from the rest of the system. The standing pressure of the vapour in the vessel was 5.8 bar. On the bottom of the sump is located an oil drain port, this is because it is the lowest part of the system. Using hoses and a valve, the oil was drained into empty oil drums.

Oil Pumping during Industrial Chiller Maintenance

Our engineer removed the old oil for recycling, then lifted the new oil to the work location. He used his portable oil pump to pump the oil in using the same port from which the oil was drained. The oil came to the correct level on the oil sight glass and the vapour was bled from the oil filter so that the compressor was primed with oil. When the system starts, the oil pump pushes the oil through to the cylinders of the compressor.

Industrial Chiller Maintenance Monitoring

The oil heater was switched on until the oil was 46°C. The chiller was then started and run tested. The Delta P across the oil filter was found to be nominal at 0.5 bar. The oil level remained at the correct level as the three way valve opened to the oil cooler. The oil cooler, in turn being cooled by a cooling loop which uses some of the tubes on the air cooled condenser.

0161 370 7193

service@maximuschillers.com

Contact Form

Industrial Chiller Maintenance and the MAXIMUS ADVANTAGE™

Any Chiller

We work on all kinds of chillers from the smallest Italian process chillers, through to large air cooled chillers and centrifugal chillers used for industry.

Any Problem

Problems are our bread and butter- that’s what we do best! Whether you require centrifugal compressor remanufacturing, or the system drying out after a burst heat exchanger- it’s all in a day’s work.

Any Part

We have an excellent supply chain where we pride ourselves on sourcing any part for your chiller. Where a part is no longer manufactured or is not available- we fit a different part. A chiller is just a chiller at the end of the day- we can achieve the same or better design characteristics and efficiency with a different part.

Any Refrigerant

HFC refrigerants are being phased down but are still the most popular variety. They are being superseded by HFO refrigerants which will become more popular over the coming years. We are also adept in the handling of natural refrigerants, such as, ammonia, propane and carbon dioxide.

Anywhere

When you do something as niche as what we do- you cannot expect to just work outside your back door. With blue chip customers around the UK and around the world- nowhere is too far for Maximus Chillers.

To read more about reciprocating chiller compressors hit the Tag at the top of the page.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Air Cooled Chiller Condenser Maintenance

Chiller Maintenance Checklist

Glycol Chiller Maintenance

Planned Preventative Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

Process Chiller Maintenance

Read about polyolester oil on Wikipedia

 


Translate