Chiller Types

Example of chiller types: 2 grey containerised ammonia chillers with air cooled condensers on top

Chiller Types

In this article we will be exploring the various chiller types. They can be categorised according to: how the condenser is cooled, weather they use vapour compression or absorption and the required chilled water temperature…

News Article No.17

Air Cooled Chiller Types

This type of chiller uses the ambient air to cool the refrigerant in the condenser. Fans suck the air through the condenser fins and so exchanging heat energy from the refrigerant and into the air. They are particularly popular in the UK due to the low ambient temperatures. They are also used in the Middle East, but the higher ambient means that they run less efficiently. Read more by following this link Click Here

Water Cooled Chiller Types

This type of chiller uses a shell and tube condenser to remove the heat energy from the refrigerant. The refrigerant condenses from a gas and into a liquid on one side of the tubes. On the other side of the tubes, condenser cooling water is being pumped through and so absorbing latent heat from the refrigerant. The water flows up to a cooling tower where it cascades down through trays and into the sump. In the opposite direction, air is blown up through the cooling tower and so creating the required heat exchange. The cooled condenser water is then pumped back to the chiller. This kind of system is more often used with large capacity chillers. Read more by following this link Click Here

0161 370 7193

service@maximuschillers.com

Contact Form

Vapour Compression

Vapour compression is the most popular kind of chiller. An electric motor drives a compressor. The refrigerant is then discharged into the condenser where the heat energy is rejected from the refrigerant as it cools down into a liquid. It goes through an expansion valve where it drops in pressure and temperature. Then, the refrigerant goes into the evaporator where it boils off absorbing latent heat from the water being chilled. The refrigerant is then sucked back into the compressor. This is called The Basic Refrigeration Cycle and you can read about it in detail by following this link Click Here

HFC Chillers

HFC chiller refrigerants, such as, R407c were developed to replace refrigerants which contained chlorine. This is because chlorine was found to have caused a hole in the ozone layer. The downside to HFC refrigerants is that they have a high Global Warming Potential. That is to say that when they find their way into the atmosphere due to refrigerant leaks, their heat trapping qualities add to the greenhouse effect.

Ammonia Chillers

The photo is of two ammonia chillers with air cooled condensers on top. A steel braided refrigerant charging hose can be seen coming into the foreground of the photo. This refrigerant has a zero global warming potential and so is environmentally friendly. The downside to this refrigerant is that it is highly toxic and corrosive. Therefore, special procedures, equipment and training is required to handle it. Read more by following this link Click Here

Propane Chillers

Propane didn’t really catch on in the UK due to the higher initial cost of the chiller. It is, however, popular on the continent in countries such as Italy. The downside to this refrigerant is that it is highly flammable. Intrinsically safe equipment is required to handle the refrigerant and so aiding with a spark free environment. Read more by following this link Click Here

Absorption Chillers

This kind of chiller uses a heat source rather than electricity to drive the cooling process. It employs a chemical reaction between two substances, such as, lithium bromide and water. To read about these chillers in detail Click Here This type of chiller is a lot less efficient than vapour compression systems. The coefficient of performance is usually around 0.5, were as with a HFC chiller it is usually upwards of 4. Therefore, they are most often used where there is a surplus of waste heat being produced by a process, such as, in a power station.

0161 370 7193

service@maximuschillers.com

Contact Form

High Temperature Chiller Types

Laser cutters use a chiller which operates with a high temperature set point of around 25°C. The laser head and the oscillator need to be cooled to a very close deadband of usually around 0.2°C. If there is a problem with the chiller, the controls shut the laser cuter down to prevent expensive failures from occurring. Read more by following this link Click Here

Medium Temperature Chiller Types

Most chillers operate at this temperature which is used for a variety of applications including…

The Cooling of Buildings

The chilled water set point is usually around 6°C. Large capacity chillers are used which supply chilled water to the building. A plant room is located near to the chillers where a pump discharges into the chillers. The water system pressure is maintained using a pressurisation unit. A different pump is used to supply fan coils around the building. The fans blow air across the chilled coils and so cooling the spaces in the building. This heat exchange warms the chilled water which returns back to the chillers.

The Plastics Industry

Two popular ways of forming plastic are by using: plastic extrusion moulding machines and plastic injection moulding machines. Plastic granules or powder is melted down and forced through a die or into a mould. Chilled water is then used to control the cooling of the newly formed plastic to below its freezing point. Small chillers are used next to each of the plastic forming machines. Alternatively, large, centralised chillers are used to provide chilled water to the whole factory.

Low Temperature Chiller Types

Breweries are a good example of the use of low temperature chillers. The setpoint is often around -5°C with glycol being added into the water to prevent it from freezing. The water/ glycol solution is pumped around the jackets of stainless steel vats which are used to brew the beer. The fermentation process created by the yeast is temperature critical and so is controlled by the chilled water. Read more by following this link Click Here

Related Articles:
Air Cooled Chiller Maintenance

Chiller Condensers

Industrial Refrigeration Ammonia

Glycol Chiller Maintenance

Hit the Tags at the top of the page to navigate your way to our extensive library of further reading on this subject.

To watch a video from The Engineering Mindset about chiller types on You Tube | Click Here


How does a grey centrifugal chiller work showing the main system components

How Does A Chiller Work

How does a chiller work? This is a question we get asked quite a lot from our subscribers. So, in this article I am going to explain the science and also talk you round the main chiller components…

The Basic Refrigeration Cycle

Weather it is the large centrifugal chiller like the one in the photo, or the refrigerator in your kitchen- most cooling systems work according to the basic refrigeration cycle which involves vapour compression. Two scientific principals are at work: latent heat and the pressure temperature relationship. Four chiller components are needed: evaporator, compressor, condenser and expansion valve.

Sensible heat

Heat energy that can be sensed is called sensible heat. Imagine a pan of water with a flame under it and a thermometer resting in it. You are watching the flame licking up the bottom of the pan and you are also watching the thermometer going up, obvious- right? The heat energy from the flame going into the pan is sensible heat.

Example

Now imagine if we pumped a liquid through a heat exchanger at 0°C with warm water being pumped through the other side of the heat exchanger. Some heat energy would exchange into the cold liquid and warm it up, for example, by 6°C. This is sensible heat.

0161 370 7193

service@maximuschillers.com

Contact Form

Latent Heat

Latent is the Latin word for hidden. Something less obvious happens when a pan of water gets to its boiling point of 100°C. You continue watching the flame licking up the bottom of the pan, but the temperature stops going up, strange- right? You carry on watching for a good while and the thermometer still does not go up? Then, eventually- the water boils into steam and the thermometer starts going up again. All of the heat energy that was going into the pan while the thermometer was not going up was latent heat. Latent heat was being absorbed into the water to cause it to change its state into steam. All of this hidden heat caused the liquid atoms to shake apart and become a gas.

Example

Now let’s look at the above example again, but this time including latent heat. A different liquid is pumped through the heat exchanger at 0°C which is also its boiling point. The amount of sensible heat, in our example, is still 6°C. Between the outside of the bubble and Step 1, there is 3°C of sensible superheat above the boiling point. Between Step 4 and Expansion, there is 3°C of sensible subcooling below the boiling point. The latent heat is inside of the bubble which, as you can see, has a considerable size. We measure sensible and latent heat energy using kJ/kg.

How does a chiller work on a PH diagram

The Pressure Temperature Relationship

How we produce the above liquid at 0°C is the second scientific principle...

Higher Pressure

If you increase the pressure of a substance- the atoms are pushed together and so they get hot. The higher the pressure- the higher the temperature.

Lower Pressure

If you decrease the pressure of a substance- the atoms spread apart and so they go cool. The lower the pressure- the lower the temperature.

Refrigerant

R134a is a refrigerant that has a pressure of 1.91 barg, relative to a temperature of 0°C.

Refrigerant Saturation Point

The above temperature of 0°C is also the boiling point of R134a. This boiling point can also be called the saturation point because no more heat can be added to the liquid before it boils. The refrigerant liquid is full of heat- or saturated.

0161 370 7193

service@maximuschillers.com

Contact Form

How Does A Chiller Evaporator Work

This is a heat exchanger which is in between two other chiller components: the expansion valve and the compressor. The expansion valve is a restriction in the chiller system and so there is a pressure drop into the evaporator. The compressor sucks from the evaporator and so maintains this pressure drop. This is the pressure temperature relationship: the lower the pressure- the lower the temperature. Liquid refrigerant flows through the evaporator at 1.91 barg and 0°C. It boils off absorbing latent heat, then it superheats, in our example, by 3°C above its saturation point. The evaporator has absorbed heat energy from the water on the other side of the heat exchanger.

How Does A Chiller Compressor Work

A bicycle pump is a compressor- notice how it gets hot when you inflate a tyre. This is the pressure temperature relationship: the higher the pressure- the higher the temperature. Therefore, the compressor also adds heat energy into the system. The refrigerant is sucked into the compressor from the evaporator as a cold, low pressure gas at 1.91 barg. It is then compressed into a hot, high pressure gas which is discharged from the compressor at 8 barg.

How Does A Chiller Condenser Work

The hot, high pressure gas being discharged from the compressor is cooled down with fans which suck air through the fins of this heat exchanger. The gas goes through its latent heat phase again, but this time condensing from a gas and into a liquid. It is then subcooled, in our example, by 3°C below its saturation point into a hot, high pressure liquid. The heat energy absorbed in the evaporator and the heat energy added to the system by the compressor is rejected into the surrounding air.

How Does A Chiller Expansion Valve Work

The hot, high pressure liquid at 8 barg arrives from the condenser at the inlet of the expansion valve. The expansion valve could be seen as being a tap which is partially closed. This restriction causes the refrigerant to back up behind the expansion valve inlet. The refrigerant that gets through the valve and into the evaporator expands into a cold, low pressure liquid/ vapour mix. The vapour is called ‘flash gas’ and is as a result of the refrigerant expanding. Vapour is another word for a gas.

How Does A Chiller Set Point Work

This basic refrigeration cycle continues until the setpoint is achieved and the controller stops the compressor. After some time, the water warms up by a couple of degrees and the controller starts the compressor back up.

Related Articles:
Shell & Tube Chiller Evaporator Maintenance

Chiller Compressors

Chiller Condensers

Chilled Water System EEV Service

Hit the Tags at the top of the page to navigate your way to our extensive library of further reading on this subject.

Read more about vapour compression refrigeration on Wikipedia | Click Here

 


Grey centrifugal chiller compressor being maintained

Centrifugal Chiller Compressor Maintenance

Centrifugal chiller compressor maintenance keeps your critical plant up and running and your customers happy. The work can be scheduled to be carried out during factory shutdown, so as not to disrupt your production. We can also carry out this work to your compressors while the factory is in production. This is achieved by isolating the compressor that needs to be worked on when it is in an off cycle. The compressors on remaining machines can carry on running.

Tasks during Centrifugal Chiller Compressor Maintenance

Here are some of the tasks that we carry out…

Oil Changes

The oil becomes dirty over time by picking up contaminants that have formed in the system. Two of these contaminants are…

Acid

Compressor discharge is the hottest part of the refrigerant cycle. Acid can be formed from the refrigerant in this part of the system.

Refrigerant Types

A popular refrigerant for centrifs is R134a. Because it consists only of one kind of refrigerant, it does not fractionalise into different component refrigerants. This would be no good for a flooded system because one or more of the refrigerants would end up in the bottom of the evaporator and condenser. The remaining refrigerant would circulate and the whole plant would not function as it should. Refrigerants popular for other kinds of system are zeotropic HFC refrigerants. This means that the different component refrigerants have different boiling points- R407c is a good example.

Metal

White metal from the compressor and copper from the heat exchangers end up in the oil. They will eventually be caught by the system oil filters…

Oil Filter Change

After completing the above, now is a good time to change the filter as the compressor is valved off and has been broken into. It is also when an oil sample is taken depending on the schedule…

Oil Samples during Centrifugal Chiller Compressor Maintenance

Our oil samples are transported using our specialist kits which include the bottles and labels. This saves mix ups in our laboratory during the analysis.

Leak Rectification

The drawback of carrying out the above are leaks because the pressure has been pumped out of the compressor into another part of the system. The ‘o’ rings and shaft seal can now leak, this kind of failure can be rectified whilst still on site by the knowledge of our engineers.

0161 370 7193

service@maximuschillers.com

Contact Form

Oil Pre Lubrication

When the compressor starts, the oil pressure is built up first using an oil pump. This is so the internal components such as the high and low speed shaft are properly oiled before they start to rotate. They can run at 10,000 RPM and are very expensive to replace. Therefore, we check the oil pressure gauges and the system controls to ensure optimum ‘pre lubing’ of your compressors.

Volumetric Efficiency

The ratio between the volume actually compressed and the theoretical volume derived from compressor design calculations. This kind of compressor has a lower volumetric efficiency than positive displacement compressors. It is because the refrigerant is compressed off the tip of the rotating impellor or impellors. The refrigerant moves outwards in a circular path due to centrifugal force. A centrif more than makes up for this lower volumetric efficiency by the high mass and volume of the refrigerant that it circulates around the system.

Design 

The refrigerant is sucked from the evaporator into the centre of the impellor which is a disc of radial blades positioned to direct the refrigerant outwards. Due to the low differential of pressure, multiple stages of impellors are often arranged in series with the discharge being directed onto the suction of the next impellor. This is simple in design with less moving parts than some other compressor types. Modern centrifs can have magnetic, levitating bearings and so remove the need for oil in the system altogether. The faster the speed, the better the efficiency- so high speed rotation of the impellor is achieved at full load. The compressed refrigerant is discharged into the condenser.

0161 370 7193

service@maximuschillers.com

Contact Form

Electric Drive Centrifugal Chiller Compressor Maintenance

Most modern centrifs are driven by variable speed drives. This is for efficiency as the load can be exactly matched. Another reason for this is to soft start the compressor. 415v and 3.3kv are popular volt inputs, although other voltages can be made available by the onsite transformer.

Open

An open drive electric motor is the most popular design. It has the drawback, however, of needing a shaft seal which needs to be replaced at periodic intervals. This shaft seal is also prone to leaking refrigerant and oil.

Semi Hermetic

The photo is of a semi hermetic design of this compressor type. The motor is contained inside the suction housing and so has the benefit of being cooled by the refrigerant. No shaft seal is needed and therefore it has none of the associated maintenance drawbacks.

Steam Drive Centrifugal Chiller Compressor Maintenance

On oil rigs there can be an abundant supply of steam that can be used to drive the compressor. It is often used on multi stage compressors which are used for the liquefaction of natural gas. The steam goes through a turbine which is connected to a shaft- this drives the impellors. The steam flow and pressure can be tested and adjusted during the visit.

Woops Something Went Wrong

When you suffer a centrifugal compressor failure- don’t worry. You are in safe hands with the team here at Maximus Chillers. We have a team who can get the compressor out and lift it to the workshop on site, or transport it to our Head Office. We have another team who are experts in the remanufacturing of this kind of compressor. A fast supply chain is in place for delivery of the internal moving parts, gaskets and bearings. We are so confident that you will be happy with us- we offer a 12 month warranty on all of our compressor rebuilds.

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Chiller Controls

Scroll Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

To read more about centrifugal chiller compressors hit the Tag at the top of the page.

Read more about centrifugal compressors on The Engineering Mindset | Click Here

 


Green Bitzer screw chiller compressor with oil separator removed on bench in our workshop

Screw Chiller Compressor Maintenance

Open Drive Screw Chiller Compressor Maintenance

Open drive screw chiller compressor maintenance involves changing the shaft seal at intervals, or if it leaks. This kind of compressor is used with ammonia as this refrigerant corrodes the copper windings and the insulation. It is also used with most large HFC (hydrofluorocarbon) and HFO (hydrofluoroolefin) chillers.

Semi Hermetic Screw Chiller Compressor Maintenance

Because all of the components are internal, this kind of compressor needs less maintenance. It is most often used with smaller chillers running on HFC and HFO refrigerants. This is the compressor type featured in the photo.

Matched Helical Rotors

This kind of compressor design uses a matched pair of helical rotors. These are accurately machined so as to trap, then compress the refrigerant as it travels along the screw. Oil injection is used to create a seal between the rotors. The two rotors are different in shape: the male rotor is driven by the motor and usually has 4 lobes. The female rotor meshes with male and usually has 6 interlobe spaces. The cylinder casting around the rotors is equally important as it seals in the vapour along the screw. Both rotors are helixes with the male rotor moving more rapidly. This compressor design provides a continuous pumping action, rather than pulsating as with a reciprocating compressor. Another advantage of this kind of compression is that there is very little vibration. Indeed, you can place a coin, on its side, on top of the compressors we look after and it does not fall over. This lack of vibration helps to prevent refrigerant leaks around the compressor.

Single Screw with Gate Rotors

This kind of compressor design uses one main rotor, meshing with 2 star gate rotors. These are at right angles with the main rotor. The main rotor usually has 6 grooves.

0161 370 7193

service@maximuschillers.com

Contact Form

Screw Chiller Compressor Maintenance and Reliability

Both of these compressor designs are very reliable with a long bearing life. A maintenance free lifespan of 30 years for the bearings is not uncommon. It is quite common that the compressor will outlive the chiller. In the unlikely event of bearing wear, a characteristic is for there to be undue noise from the compressor at part load which goes away at full load. Higher oil temperature and an unsatisfactory oil analysis are also indicators.

Slide Valve

The capacity is seamless as it is regulated with a slide valve. A spring returns the valve to the unloaded position and a gear type oil pump gives above discharge pressure to load it. The oil pump is not for lubrication, it is just to give the valve enough force to slide with the discharge pressure acting against it. A slide valve potentiometer is fitted to a sliding rod on the end of the valve. It translates the movement along this rod into usually 4-20mA. This signal feeds back to the controller which converts it into a percentage loading reading.

Lubrication during Screw Chiller Compressor Maintenance

Pressures and temperatures are taken during the maintenance to ensure seamless operation. The oil sump is usually inside the base of the oil separator which is at discharge pressure. An oil return pipe is available from the oil sump to the suction side of the screw. Because of the pressure difference from discharge to suction, the oil naturally lubricates the compressor without any need of an oil pump. The oil lubricates the bearings and is injected with the refrigerant along the screw. This provides a seal between the rotors or gate rotors, it also lubricates the rotors to prevent excessive wear.

Oil Separator

The oil enters the oil separator after being discharged with the refrigerant from the compressor. This vessel is insulated so as to stop refrigerant condensing inside as it would in the condenser. An oil heater keeps the oil at the optimum temperature for the compressor. This heater also prevents liquid from forming in the oil separator during off cycles. A check valve on the outlet also prevents this from happening by stopping the migration of refrigerant from the condenser. As the oil sump is the oil supply to the compressor, a temperature sensor will make the program lock the compressor out, should the oil be too cold. This is usually because the main power supply to the chiller has been off during maintenance. The larger volume inside the oil separator slows the speed of the refrigerant so as to allow the oil to drop out. A common design is for the discharge to be directed to the top of the vessel, with a spiral going down to the sump. The oil falls out of the refrigerant vapour during this process. For additional oil recovery, the oil goes up through finer and finer layers of mesh. The oil sticks to this mesh and runs down into the sump.

0161 370 7193

service@maximuschillers.com

Contact Form

Oil Return

Small amounts of oil that have escaped the oil separator will end up in various vessels around the system. On smaller HFC systems there is less of a problem as the oil is entrained by the refrigerant, round the system and back to the compressor. In larger, flooded HFC systems, the oil mainly ends up in the bottom of the evaporator. For ammonia systems, the oil does not entrain with the refrigerant, so oil return devices must be used.

Eductor

This is a pot at the bottom of the vessel where the oil collects. At periodic intervals, discharge gas is blown across the top of the oil which has collected. This has the effect of picking it up and carrying it into the suction of the compressor.

Periodic Oil Changes

We at Maximus Chillers have the full range of refrigerant grade oil for all refrigerant types. It is part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere. It is critical that the correct oil is selected otherwise compressor failure will result. During each maintenance visit, we make a note of the compressor run hours and carry out oil changes at the correct intervals.

Oil Analysis

We take oil samples which we analyse in our laboratory for signs of compressor wear, oil quality and contaminants. This way, we can prevent untimely compressor failure. If one of your compressors were to fail, however, we have a remanufacturing facility and a lift and shift team to get the job done fast! 

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Scroll Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

To read more about screw chiller compressors hit the Tag at the top of the page.

Read more about rotary screw compressors on Wikipedia | Click Here


Large chiller, refrigerant cylinder, brazing equipment and tools during chiller service company visit

Chiller Service Company Visit

A typical rainy day in the North West, perfect for a chiller service company visit.

News Article No.11

Electrical Faults during Chiller Service Company Visit

This was a return visit to do a refrigerant leak, but the customer alerted our engineer’s attention to an electrical fault. System 2 was found to be locked out in fault on the recent maintenance visit, but now System 1 was being held off too. The fault message on the controller was High Pressure. The controller sends a 240v fault feedback signal, through the high pressure switch which returns to the controller. Our engineer had a look at the wiring diagram to find the number on the terminal strip and checked it out with his multimeter. As he suspected, there were volts going out, but not coming back. He removed the side panel for system 1 and found the switch on the discharge pipe. It was the type that has a red button on the top. When he pressed it, there was a click and volts returned to the controller.

Alarm Reset during Chiller Company Service Visit

He interrogated the Carel controller and followed the reset procedure. The controls went through a timer and then the start sequence was initiated.

Run Testing during Chiller Company Service Visit

After the first scroll compressor started, the head pressure started to build up, but the condenser fans did not start. The on board high pressure gauge carried on rising until the high pressure switch was tripped again.

Head Pressure Control

A transducer on the discharge is used by the controller to sense the pressure in the condenser. When our engineer looked for this in the controller, it was found to be reading wrong by a considerable amount. There is a facility to enter a password and recalibrate the transducer, but this only allows for a small adjustment.

Test Instrument

Our engineers carry various kinds of test instruments which can be used to give a temporary false reading to the controller. This gets the customer up and running and back in production whilst a new transducer is ordered and sent to site.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Company Service Low Pressure Visit

Now on with the job to resolve the low pressure issue with the chiller.

Refrigerant Pump Out

Our engineer lifted the liquid line solenoid valve and decanted the remaining refrigerant into a vessel using his recovery unit. He only got out 7kg of a charge of 36kg.

Leak Testing during Chiller Company Service Visit

We use nitrogen for the leak testing as it is an inert gas that will not cause problems with the refrigerant system. There was a sign of the leak in between the steel frame at the middle of the condenser and the condenser tubes. We always strip the chiller down and leak test the entire system though. This is so that the job does not end up going round in circles. At first the leak could not be found, so the pressure was built up in stages, taking into account industry recommended guidelines for a chiller. Sure enough the leak was where it was suspected to be. The occurrence of this kind of leak can be reduced with the use of vibration eliminators.

Brazing during Chiller Company Service Visit

The location of the leak was reported to the maintenance engineer onsite and a hot work permit obtained. The equipment we use is tested at regular intervals to be safe and in good working order. A half hour fire watch was stipulated in the permit, along with the removal of combustible materials from the work location. Correct PPE being donned, he brazed the leak to the required industry standards.

F-gas Pressure Test

A chiller has a different pressure test procedure to other systems, so our engineer built the pressure up according to industry standards, then recorded it on his pressure test certificate. After the required time had elapsed, he rechecked the readings which were found to be satisfactory.

Vac Pump

Each of our engineers carries a state of the art 10 cfm vacuum pump to speed up the dehydration process. We use high quality Torr gauges too, so as to get an accurate pressure reading. A good read back was achieved at the end of the process.

Recharge and Run Test

After the refrigerant recharge was carried out, a satisfactory run test was achieved.

0161 370 7193

service@maximuschillers.com

Contact Form

Refrigerant Economizers

This particular chiller uses an economizer to further subcool the refrigerant. Chiller designers have worked out that the end user can save a considerable amount of money over 10 years if these components are used. After the subcooled liquid refrigerant leaves the condenser, it goes through a plate heat exchanger. Some of this refrigerant, however, is diverted through a thermostatic expansion valve, to the other side of this plate heat exchanger. Further subcooling occurring through the plates.

Expansion Valve

The refrigerant drops in pressure as it goes through the expansion valve. A bulb is fitted to the suction pipe on the outlet of the heat exchanger. The bulb has to be at the correct 'o clock position as oil insulation will affect the operation of the valve. A capillary tube connects the bulb to the valve. Inside the bulb, the same kind of refrigerant that is running in the system is present in its liquid state. As the temperature rises in the suction pipe, this refrigerant boils off, adding pressure into the capillary tube. This added pressure forces the power element down on the valve body and a needle forces the valve open.

Flash Gas

Imagine if the refrigerant was not subcooled at all. It would be around its saturation point with a lot of it flashing off into its vapour phase. Not good when you have warm water coming back from the process. The refrigerant would not absorb very much latent heat into the refrigerant system.

Efficiency

Imagine, on the other hand, the economizer which is fitted to this chiller. Now we have a good proportion of refrigerant in its liquid phase, on the low side of the system, with a minimum amount of flash gas. The warm process water has more chance to cool and the refrigerant absorbs a lot more latent heat. The chiller achieves set point easier and therefore saves a considerable amount of electricity. With this further subcooling monitored for a while, time for a signature from the customer and another job well done!

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Breakdown

Chiller Fault Finding & Diagnosis

F-gas Chiller Leak Testing

Chiller Commissioning

Air Cooled Chiller Condenser Testing

To read more about chiller electrical faults hit the Tag at the top of the page.

Read more about F-gas leak checking at Refcom | Click Here


Oil return solenoid removed during industrial chiller service

Industrial Chiller Service

On an industrial chiller service visit, the ammonia alarm was found to have been triggered.

News Article No.10

Industrial Chiller Service Faults

The onsite engineer had fault found the chiller and silenced the alarm, the yellow light was still flashing. The red light was lit on the panel and the red LED was illuminated on the ammonia alarm console. He had reported a smell of ammonia to us over the phone. This gave us a priority of getting to site, as many other alarms of this nature are often spurious. Our engineer attended site within an hour and confirmed that the fault finding was correct as described by the onsite engineer. The chiller is containerized in design as it is situated outside. All around the chiller are door panels for access to the various system components.

Breathing Apparatus and PPE

He donned his mask and full length ammonia resistant PPE before opening one of the panel doors. This was to ensure that he did not get overwhelmed by the refrigerant when he opened the door. He started with the door into the storage area of the containerized chiller. A strong blast of ammonia came out in his face- lucky for the PPE!

Localising the Fault

Working his way around the chiller, our engineer found more and more hazardous door openings! Eventually he found the culprit: one of the two flanges were leaking on the oil return solenoid. The refrigerant vapour was coming out in its usual white form. The oil return pipe feeds off the oil pot which is a chamber that the oil sinks into from the refrigerant economizer. This vessel was valved off and the other end of the pipe valved off too.

Pinpointing the Fault

Now that the ammonia refrigerant leak had started to calm down- it was possible to see through the white vapour to exactly which of the flanges was leaking. It was the right one as seen in the picture. It consists of an ‘o’ ring made of ammonia resistant rubber material.

0161 370 7193

service@maximuschillers.com

Contact Form

Industrial Chiller Service in Local

The above mentioned chiller runs in local in a lead/ lag configuration with the adjacent chiller. That is to say- there is no wire or modem to a remote location. A panel is available in between the two chillers to sequence the switch over between the two. When the chiller tripped out due to the fault, the other chiller was supposed to have been enabled. This did not happen, so our engineer investigated the situation. The sequencer panel sends out a 24v fault feedback signal to each chiller. This, in turn, goes through a relay and back to the sequencer panel if all is good. When a fault occurs, the volts drop out to the relay in the chiller and a relay drops out in the sequencer. When the relay drops out in the sequencer, a normally closed contact makes and brings a red light on. This was not happening, so our engineer followed it through with his multimeter. He found a blown 1 Amp control fuse in the chiller, he replaced it and it blew again. After some careful research he found that there was an earth leakage due to the ingress of water into a safety switch. This switch was nothing to do with the above, but it blew the whole control circuit. Having reinstated the fuse, he found that the panel switched over satisfactorily in local.

Advantages

This kind of operation method has an advantage in its simplicity. There are no complicated BMS systems for the chiller to be integrated into. A sequencer panel is easy to construct and maintain- keeping the costs down to the end user.

Disadvantages

The disadvantage of this kind of system is that the first thing the factory usually notices is that they are loosing the process. The water temperature getting too high is the first alarm signal. With this site, however, there is a permanent onsite engineer on hand. He is experienced with the first checks to carry out and can often get the plant running with no problem.

0161 370 7193

service@maximuschillers.com

Contact Form

Standing Pressure during Industrial Chiller Service

The standing pressure was taken into account on the return visit to fit the oil return solenoid valve seal. Because the valve is on the low side of the system, when the chiller is off, the pressure is higher than when it is on. Therefore, so long as the seal pressure tests to this pressure, then all will be good when the system is running. That is assuming that the valve seals work satisfactorily at a lower temperature range. There are issues sometimes when a seal will be okay at ambient temperature but will leak when it becomes brittle at a colder temperature. This happens usually on an old seal and, indeed, this condition can be tested for when run testing the system.

Leak Testing during Industrial Chiller Service

On fitting the seal, our engineer donned full length ammonia resistant PPE and breathing apparatus. A little at a time, he introduced refrigerant into the area of the valve seal. Any residual air being purged through a valve.

Pressure and Temperature

The standing pressure of refrigerant is affected by temperature. That is to say- that the higher the temperature- the higher the pressure. On the day this job was carried out, the ambient temperature was 12°C and using an app on his phone, he calculated that the pressure should be 5.6bar. This is consistent with Charles’ Law of Constant Volume with a coefficient added for this particular refrigerant. If the pressure had been higher than this, it would indicate the presence of air in the system. Daltons’ Law of Partial Pressures states that all gasses in a vessel will act as if they are on their own, therefore, causing a higher pressure.

Run Testing during Industrial Chiller Service

After the pressure was built up to full standing pressure and the seal held satisfactorily, the system was then run tested to ensure, as stated above, that the seal performed well across the full temperature range during the operation of the plant.

0161 370 7193

service@maximuschillers.com

Contact Form

Mass Flow Rate during Industrial Chiller Service

The mass of refrigerant passing, which is measured by the second.

Suction Density

In this case of the oil return valve seal, we are looking at the density of the low side refrigerant as it passes into the suction port of the compressor. This is shown on the LP gauge near to the compressor. The higher the pressure of the refrigerant, the more refrigerant there is- so it has a higher mass flow rate. This system has a refrigerant saturation point of 1°C which corresponds to a pressure 3.4bar. That is a high mass flow rate for this kind of refrigerant. This is because this refrigerant is usually used in low temperature applications where the pressure of the refrigerant is below that of the atmosphere. In that condition, when a leak occurs on the low side of the system- air leaks in. Air bleed valves are available to remove this unwanted air from the system.

Compressor Loading

The bigger the compressor on a chiller- the higher the mass flow rate. Most compressors have loading solenoids, vanes, or a slide valve to regulate this.

Piston Displacement

Reciprocating compressors use loading solenoids to increase piston displacement. Usually, oil from the oil pump holds the piston valves open and so preventing compression on that cylinder. When more flow rate is needed- the loading solenoid de energizes- the piston valves drop and the cylinder comes into action. Therefore, increasing the mass of refrigerant through the compressor.

Vanes

Vanes are used on centrifugal compressors to increase the flow of refrigerant through the compressor. An actuator linked to a chain is used to open the vanes. The controls work out the correct position of the vanes for a given load condition.

Slide Valve

The slide valve offers a seamless amount of loading, anywhere between 0% and 100% A slide valve potentiometer senses the position of the slide so that the controls can regulate the flow through the compressor. The screw compressor in this article uses a slide valve- on full load with the slide at 100% all readings were taken with a good read back. Another job done- another happy customer!

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Breakdown

Chiller Service Company Visit

Chiller Fault Finding & Diagnosis

F-gas Chiller Leak Testing

Chiller Commissioning

To read more about chiller fault finding hit the Tag at the top of the page.

Read more about refrigerant mass flow rate at Science Direct | Click Here


400 kw white chillers with panels open during air cooled chiller maintenance

Air Cooled Chiller Maintenance

A nice day to carry out air cooled chiller maintenance at a new site we have taken over in the South East.

News Article No.6

Our engineer attended site at around 9am with the risk assessment method statement having been sent in advance. A site survey was carried out to see if there were any additional risks. Should there have been any changes- the RAMS have a section for the additional risks and control measures. After gaining a permit to work, our engineer was issued with a security pass to access the chiller compound. Three chillers are located in the compound which feed air handlers for a critical application. Two of the chillers are multiple system, scroll compressor, air cooled chillers. The other is a single system screw chiller.

Program Settings During Air Cooled Chiller Maintenance

A complete download of the program settings is available in our engineer’s phone. This is to cross reference the settings, should one of them be accidentally changed by the maintenance engineers. On site engineers are the first port of call for chiller trip outs, with the responsibility to get the plant up and running. We offer real time assistance, over the phone from our Technical Support Desk and can send user manuals in PDF form, direct to their computer. The settings were found to be nominal, so a detailed analysis of the alarm history was carried out:

Alarm History During Air Cooled Chiller Maintenance

In reverse date order, the alarm history of all the systems was interrogated. There had been several system shut downs to carry out the periodic maintenance by the onsite personnel. The electricity having been shut down, there was a subsequent oil pre heating timer in the history too. On Chiller 2, System 1 however, there had been several low pressure trip outs. Our engineer decided to start the maintenance with this system by carrying out a full diagnosis of the low side of the refrigerant system:

0161 370 7193

service@maximuschillers.com

Contact Form

Superheat During Air Cooled Chiller Maintenance

The system runs on R410a refrigerant. This refrigerant has higher operating pressures in comparison with other HFC refrigerants. It has an efficient temperature range which can be seen on a pressure enthalpy chart. Below or above this range- the refrigerant loses efficiency and so has a lower coefficient of performance. The most common saturation point for this refrigerant is 0°C which corresponds to a 7 bar suction pressure in the evaporator. Above this is the superheat of the refrigerant returning to the compressor. On this occasion there was found to be 26°C of superheat and a suction pressure of 4 bar- close to the low pressure trip out. After careful diagnosis, our engineer decided to focus his attention on the expansion valve:

Thermostatic Expansion Valve

There are 4 forces acting on a TEV:

Liquid line pressure coming from the condenser.
Versus
Suction pressure down the equalising line from the far side of the evaporator. This compensates for the pressure drop across the evaporator and shows the true compressor side pressure.

Spring pressure acting upwards and closing the valve.
Versus
Bulb pressure forcing the valve open.

To reduce the superheat, the bulb should have forced the valve open. The refrigerant charge in the bulb acts upon the bellows to achieve this. The reason for the malfunction, on this occasion, was found to be the failure of the expansion valve orifice. It had become jammed- causing a shortage of refrigerant in the evaporator and high superheat.

Latent Heat

Our engineer was carrying out the above fault finding with one compressor running and the other two being held off. This was to prevent a low pressure trip. Where chillers are left running with a high superheat condition, the reduced amount of latent heat causes a higher cost in electricity relative to refrigeration effect (COP) The refrigerant carries on superheating without absorbing latent heat- pointless and inefficient for a chiller.

Chiller Pump Down

For convenience, this chiller can be pumped down and valved off using the service valves. The evaporator can be worked on after breaking in procedures are carried out. Therefore, we have arranged for this to be carried out before fitting the new expansion valve parts. These chillers also have the ability to pump down the refrigerant on receiving a fault feedback from the electronic leak detector. This is an added measure to lower the environmental impact of refrigerant leaks.

0161 370 7193

service@maximuschillers.com

Contact Form

Subcooling During Air Cooled Chiller Maintenance

This is cooling the refrigerant vapour down, through the latent heat phase and then subcooling the liquid down further. On System 2 of the same chiller, a subcooling issue was identified. 21 bar/ 36°C saturation was normal for that system as defined by the fan speed controller. Now, the system pressure was higher at 28 bar/ 47°C saturation, so our engineer decided to work out the subcooling. A very high reading of subcooling was recorded at 28°C this was diagnosed to be due to non condensables in the refrigerant:

System Non Condensables

Non condensables are gases that will not condense, such as, air and nitrogen. If nitrogen is not vented properly and a deep vacuum then achieved, the gasses will remain in the refrigerant system. When calculating the subcooling, the readings work out incorrectly due the presence of the gasses. This can lead to false diagnosis. The remedy for the issue was to arrange a full refrigerant decant, pressure testing and dehydration, before charging with new refrigerant.

Efficiency

Having good subcooling values on a refrigerant system is critical to efficiency. Where there is no subcooling- the refrigerant has not fully rejected all the latent heat from the condenser. This can be seen when looking at a PH chart and plotting the pressures and temperatures. This heat remains in the refrigerant and adds to the system along with heat added from the compressor and heat from the process. This is another reason the coefficient of performance is reduced and so incurring increasing electricity costs for the plant.

Economizer

These chillers are also fitted with refrigerant economizers- one for each system. They work by diverting some of the refrigerant from the condenser, through a small expansion valve, then through a plate heat exchanger. The rest of the liquid refrigerant passes on the other side of the plate heat exchanger and so is further subcooled.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Glycol Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

To read more about chiller control systems hit the Tag at the top of the page.

For further reading on chilled water visit Wikipedia | Click Here


Large white chiller being inspected to compose a chiller maintenance schedule

Chiller Maintenance Schedule

The chiller maintenance schedule in essence is as follows:

  • What is the plant? According to the asset list for that particular contract.
  • What are we going to do with it? The checks, procedures and diagnosis in the pursuit of the maintenance of the chillers.
  • How often? The periodic maintenance schedule defining the required interval between visits to ensure seamless operation of the plant.

News Article No.5

Chiller N+1

N+1 is intrinsic in the development of a chiller maintenance schedule. N+1 means the amount of cooling required + the same amount again in parallel. It can also be represented as 2N. Two water system pumps are a good example: where the pipework splits in two- one pipe for each pump. When a pump fails, the redundant pump comes online. Chillers are arranged in parallel, in this way, on the water system. This redundancy allows for a stress free maintenance of the plant. The failed system can be rectified and brought back online while the redundant system takes the load.

Intervals of Chiller Maintenance Schedule

The intervals in the contract are influenced by the redundancy of the chillers on site. The less run hours the compressor does, the less maintenance is required. We at Maximus Chillers can tailor make a maintenance schedule exactly to your needs by looking at how much the chillers are used and how hard they work.

Load affecting Chiller Maintenance Schedule

For some applications, the chiller operates under a high load condition all the time, with a redundant system in standby. On other applications, the chiller works in minimal load conditions. Regardless of the load conditions, the chiller is critical to the cooling of buildings or for an industrial process.

Lead/ Lag of Chiller Maintenance Schedule 

An important thing to remember is to balance compressor run hours and bearing wear by rotating the lead/ lag duty of the chillers. This can usually be done in the in the sequencer (if fitted) by changing a program setting. Otherwise, the switchover controls can be changed on the off/hand/run toggle switches. Where manual changeover is required, the onsite engineers are usually conversant with the procedure concerning the water system pumps, valves and controls. During the maintenance, the stop checks can be carried out on the redundant system, while the run checks are carried out on the system which is online.

Chiller Maintenance Schedule for Recip Compressors

Recip compressors require a log of the compressor run hours. This is because the valves and bearings should be changed at pre prescribed intervals as laid down by the schedule. Particularly important to reciprocating compressors are regular oil changes and oil sampling- a small change in the result of an oil sample can prevent a serious compressor smash up. A check list including the model number and serial number is completed on each visit and kept in a file on site. This file can be consulted during diagnosis and maintenance to decide on the beast way forward with an on going issue.

Chiller Maintenance Schedule for Air Cooled Condensers

Air cooled condensers can often be looked after by the onsite engineers in between maintenance visits. Just a quick brush down every few months is usually all it takes. Where the environment lends to a type of contaminant being collected on the condenser coils, an effective chemical is selected from our stores and used on the coil. Where there is an issue with the serviceability of the condenser, we can put together a plan to keep on top of it. We can even retrofit a new condenser- it’s what we call the MAXIMUS ADVANTAGE™

0161 370 7193

service@maximuschillers.com

Contact Form

Shell and Tube Evaporators

The shell is made from a heavy steel sheet rolled into a circle. The seam is welded together to form a cylinder. The tubes are pushed though the tube holders which are made from steel and are welded into the shell of the evaporator. The tubes are copper because of its good thermodynamic properties.

Direct Expansion Evaporators

Direct expansion is achieved in an evaporator with a thermostatic, or electronic expansion valve. The refrigerant enters the valve from the condenser as a high pressure, hot liquid. The pressure drop on the evaporator side of the valve makes the refrigerant flash off into a cold, saturation point liquid and vapour mix. The liquid boils off, absorbing latent heat through the inside of the copper tubes. On the outside of the copper tubes is the return water from the process, or the cooling of buildings.

The parts of the maintenance schedule that relate to DX evaporators are:

Oil Pooling

The inside of the tubes are in the clean environment of the fridge system. This means they do not become fouled. A tube insulating issue, however, can be caused on the inside by oil. If there are issues with the oil return system, the oil can pool in the evaporator. A low refrigerant charge can have the same effect. Written into the maintenance schedule are manual oil return and oil draining visits. During these visits, the monitoring of the refrigerant charge is also carried out.

Sensor Location

If a sensor is not located in its pocket correctly, or without sufficient heat transfer paste- it will read incorrectly back to the electronic expansion valve driver. This will cause the expansion valve to malfunction.

Pressurisation Units

A full maintenance of the pressurisation unit is carried out. This includes the pumps, controls and program adjustments as required. Incorrect pressure in the water system will cause a knock on effect of faults on the chillers.

Pump Sets

As above with chiller lead/ lag change over, water system pumps are manually changed over from lead to lag in the building controls. Carrying out this procedure reduces the chance of pump failure between visits. This is because it balances the pump run hours and so prevents bearing seizure after a long period not running.

0161 370 7193

service@maximuschillers.com

Contact Form

Flooded Evaporators

Flooded evaporators are the reverse of the above DX evaporators. The refrigerant is on the outside of the tubes, with water on the inside of the tubes. Gravity and refrigerant charge determine the refrigerant level in the condenser and evaporator. In between the two is located the liquid pipe with the orifice located in the pipe for the expansion of the refrigerant. The cooling water flows through the condenser tubes and off to the cooling towers. On the low side, the chilled water flows through the evaporator tubes and off to the process, or the cooling of facilities.

The parts of the maintenance schedule that relate to flooded evaporators are:

Tube Fouling

Because the condenser cooling water and chilled water systems are pumped through the pipes, the tubes become dirty over time. This occurs more often on the condenser as the water towers are open to atmosphere. Contaminants from surrounding buildings and factories gets into the water system and thermally insulates the tubes. This thermal insulation reduces the heat exchange through the copper tubes. The knock on effect is higher head pressures and eventually high pressure trip outs.

Specialist Cleaning Equipment

We at Maximus Chillers have in our stores the required equipment to carry out the cleaning of the tubes. Our engineers can attend site and liaise with the onsite engineers as regards the draining, strip down and lift out of the heat exchanger end plates.

Flushing Agents

A water sample is taken from the cooling and chilled water systems. These samples are sent off to our laboratory for analysis. Bacteria can build up in the water system causing slime- this can be rectified with a careful selection of chemical agents. Also, silt can build up- various chemicals are added to positively charge the silt and so carry it around the system to the strainer. Where the issue is caused by rust- an inhibitor can be added to prevent, or slow the oxidization of the steel.

0161 370 7193

service@maximuschillers.com

Contact Form

F-gas Testing of Leaks

The frequency of F-gas leak testing is determined by the size of the plant. This will be detailed in your F-gas file which is kept on site. Another record of this is kept by the chiller company at their registered office. The copies of the periodic leak testing sheets are kept by both parties. These detail the result of the test, refrigerant added to the system, refrigerant removed from the system and the required follow up actions. Some methods of leak detection are:

Visual Inspection

On each visit our engineers remove the coverings of the ends of the condensers and panels. This is to inspect the whole machine for a sign of a leak. Any potential leak is marked for future identification of where it is. A visual inspection will always be backed up with a further diagnosis such as:

Superheat and Subcooling

These readings are taken during a maintenance visit to determine the refrigerant charge of the chillers. The engineer, however, has to bear in mind that the subcooling and superheat readings can read abnormally due other reasons.

Bubble up Leak Spray

Various makes are available from the suppliers. Each engineer having his own preference. We at Maximus Chillers stock leak sprays and a wide selection of other materials.

Electronic Leak Detectors

Fixed

This type of leak detector is installed in the chiller low down in the panel. This is because HFC refrigerant is heavier than air. The leaking refrigerant will tend to pool in the bottom of the various panels around the chiller.

Portable

Each of our engineers carries a portable sniff tester. It comes with an extended tip to get into the most tight and awkward places. The leak detector has a replaceable element inside the unit. It also comes with replaceable tips which can be swapped out periodically. They come with a portable plug socket and transformer to charge the on board batteries after use in the field.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Glycol Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

To read more about chiller expansion valves hit the Tag at the top of the page.

For further reading on chillers and the chiller maintenance schedule- visit Better Bricks | Click Here


Chiller compressor failure of blue Grasso in enclosure

Chiller Compressors

System Testing for Chiller Compressors

Chiller compressors fail often as a result of ineffective servicing and system testing. At Maximus Chillers, we carry out extensive tests during our visits to ensure that small problems are resolved before they become big problems. If we notice a reading starting to become abnormal, we can carry out the diagnosis and then remedy the problem. Some of the compressor readings we monitor are:

Temperature of Chiller Compressors

The suction, discharge, motor windings and bearing temperatures are recorded for comparison to previous visits. These are often available in the PLC for the chiller, or our engineer can take the readings with his test equipment. Problems with the oil cooler can be the cause of higher compressor temperatures, the system running outside of its nominal operating conditions is another reason. Magnetic drive systems have an advantage as they do not use oil.

Accelerometer

Portable vibration sensors are carried in of each of our company vehicles. This is an accelerometer to measure vibration. Along with other system readings, we keep an on going record of the vibration levels around the compressor. When internal components are coming out of alignment due to wear, this causes an out of balance condition in the compressor. This, in turn, causes a knock on effect- causing other components to go out of balance. Catching this condition early will prevent a compressor smash up resulting in the replacement of expensive internal components.

Oil Analysis for Chiller Compressors

Another way of preventing big problems from occurring is periodic compressor oil testing. Samples are taken, usually on alternate visits, which are sent off to a laboratory for analysis. The acid level is tested to provide pre warning of a potential compressor motor windings burn out. This is because acid in the compressor oil rots through the electrical insulation on the motor windings. The presence and quantity of white metal and yellow metal is analysed too. This is a window through to a component starting to wear inside the compressor.

0161 370 7193

service@maximuschillers.com

Contact Form

Screw

The compressor in the photo is a screw compressor. It operates with ammonia refrigerant. This refrigerant is usually used for low temperature applications, mainly associated with food production. This compressor, however, has a 1°C refrigerant saturation and is used to cool computer rooms. Common causes of compressor failure on this kind of compressor are:

Leaking Castings on Chiller Compressors

The various compressor components are sealed together using ‘o’ rings or paper gaskets. ‘O’ rings are especially prone to leaks due to work hardening and flattening of the sealing face. The system can be pumped down and the compressor valved off. Then, our lift and shift team can remove the compressor to our remanufacturing facility for strip down.

Leaking Shaft Seal

The mating surface of a shaft seal has a mirror smooth finish. This is to reduce friction and aid with a better seal. Over time, this starts to wear, causing an ineffective seal with a leak of refrigerant and oil. A service visit can be arranged to change the shaft seal on site. The shaft couplings can be split, the shaft seal can then be removed and replaced. A quick job, then the machine is up and running again.

Slide Valve Potentiometer

This is an electronic device with a slide attached to the moving compressor slide valve. The device has a start and an end position programmed into it during commissioning. The potentiometer converts the slide valve position, usually into a 4-20mA signal which is fed back to the chiller PLC. They are prone to reading out, or the reading being jammed in one position. This results in a trip out from the controls, as the controller is not able to determine the true position of the compressor slide valve. We have an off the shelf stock of slide valve potentiometers for the various compressor range. A service visit can be arranged to replace the part after diagnosis has been carried out. The controls operate the loading and unloading solenoid valves to change the position of the slide valve.

0161 370 7193

service@maximuschillers.com

Contact Form

Centrifugal

Centrifugal compressors are a very reliable kind of compressor but when they go wrong, they can go wrong in a big way. Compressor overhaul is expensive, this can be carried out onsite, or a better option is a lift and shift to our remanufacturing facility. Proximity sensors are usually fitted to monitor the distance between the impeller and the casting. This is an added protection along with the other sensors and transducers around the compressor.

MCS

We are on account with Micro Control Systems- an American company who specialise in building panels to order for specific chiller compressors. We easily fit this control system to any compressor to control the loading of the vanes in accordance to the available load from the process. The control panel has previously been fitted to other machines of the same model number, so any teething issues have already been ironed out. Maximus Chillers can achieve seamless operation of your plant.

Oil System for Chiller Compressors 

Newer centrifugal compressors are oil free so as to eliminate any of the service issues relating to oil. There are a substantial amount of compressors, however, that use oil to lubricate the bearings. This kind of compressor, if properly serviced, can last for 50 years. The oil system picks up impurities which are caught by various filters. These filters can be changed or cleaned according to the prescribed service schedule. Our engineers make sure that spares are ordered and kept onsite prior to a visit.

Cost Effective

Our visits and ongoing upkeep of your plant saves money. Money spent as a preventative measure saves so much more money in the long run. With competitive prices on specialist internal centrifugal compressor parts- Maximus Chillers completes the picture. When compressor failure occurs, you are in safe hands with years of industry experience invested in each of our engineers.

0161 370 7193

service@maximuschillers.com

Contact Form

Scroll

These are some issues affecting a scroll compressor:

High Discharge Pressure

With high discharge pressure, there is a corresponding increase in discharge temperature. This means that the compressor is operating beyond its recommended values. The cause of this is often a poorly maintained condenser. Especially on industrial chillers, there can have been gaps in the schedule where the condenser was not correctly serviced. This condition is often rectified easily by an onsite engineer by giving it a brush down. Where the fins are bent over- we carry a specialist tool to straighten them back out- how they came out of the factory. We also use different formulas of chemicals to rinse the various kinds of dirt from deep within the fins.

High Suction Pressure on Chiller Compressors 

Some chillers are used where very high water temperature can come back from the process if the chiller were to be off line for a short period. Usually, this happens in factories where certain industrial processes are being carried out. When the onsite engineers start the plant back up, the chiller experiences a high heat load to deal with.

MOP Expansion Valves

Maximum operating pressure expansion valves limit the pressure in the evaporator to a given level, regardless of the available heat load from the process. They do this by having a limited amount of liquid refrigerant in the bulb. When this runs out, the power element cannot push the orifice open any further- thus limiting the suction pressure. This is important to prevent scroll compressor failure as it prevents putting added strain on the compressor motor windings due to high suction pressure.

Oil and Refrigerant Shortage

Where there is a shortage in refrigerant, there follows a low oil level condition. The refrigerant mass flow rate carries the oil around the system and back to the compressor. This is greatly impaired when the chiller is short of gas. The oil cools the compressor and lubricates the shaft bearings. These bearings and other internal components wear down and seize causing failure. Maximus Chillers can put together a package to minimise chiller compressor failure.

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Screw Chiller Compressor Maintenance

Chiller Parts Supplier

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Scroll Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

How Does A Chiller Work

To read more about scroll chiller compressors hit the Tag at the top of the page.

Visit Wikipedia to read more about impellers which are used in centrifugal compressors | Click Here


PLC and relay board in a panel during chiller service company visit

Chiller Service Company

Electrical Testing

A chiller service company can carry out electrical testing and diagnosis even when a wiring diagram is not available- our engineers can trace the wiring around a chiller.

News Article No.3

Doing this often aids with the diagnosis even when there is a wiring diagram, as having your eyes on a component often makes more sense than a symbol. In any case, our engineers carry out system testing with Fluke multimetes and ammeters.

F-gas Leak Testing by Chiller Service Company

We also carry a range of thermocouples and probes to be used in conjunction with our calibrated digital thermometers. We use these along with comparators to carry out leak testing. After fitting the probes, we first have a visual look around for a sign of a gas leak. All parts of the pipework and system components are inspected. Then, we carry out a full refrigerant diagnosis to determine that the refrigerant system is operating with a full charge. Reports for each chiller are completed and filed in the onsite F-gas leak register. A history can be built up to assess the serviceability of the plant and the frequency of any leaks.

Chiller Service Company Monitoring

Where intermittent faults are concerned, on site monitoring is required. If the job is not progressed on each visit, there is little point in a call out. We carry out tests during monitoring and ensure that the wiring is tight. Hopefully, waiting for the fault to occur whilst next to the machine. Alongside this, we rely on feedback from the end user, as regards, the symptoms and the circumstances of the chiller when the fault occurred. From this we extrapolate the diagnosis and decide the next step to take. This may be to attempt to move the fault to another machine or, at least eliminate one thing each visit.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Service Company Evaporators

Shell and Tube

These have a rolled steel shell, welded down the seam with and end plate on either end. The water system pipes can be bolted to the sides or the end. The endplate can be removed for access to the waterside of the tubes. A strainer is fitted to the inlet to catch any foreign objects that may have been carried around the water system. Inlet and outlet gauges are fitted for the monitoring of the water system readings during a visit. 

Flooded

On larger chillers, the screw or centrifugal compressor is mounted directly on top of the flooded evaporator. The refrigerant is in its liquid phase on the outside of the tubes. These are arranged in a rack extending through the length of the shell. The warmer process water running through the tubes causes the refrigerant to boil off. A sight glass is usually available to check the state of the refrigerant evaporating on the copper tubes. The suction from the top of the evaporator goes round a baffle so as to prevent the slug back of liquid refrigerant into the compressor. The refrigerant flow into the evaporator is controlled by the expansion valve…

Expansion Valves

This takes the form of a fixed size orifice on the liquid line in between the shell and tube condenser and the flooded evaporator. The size of the orifice previously being calculated to match the mass flow rate of the refrigerant dictated by the compressor. Some newer systems have a variable orifice for the more efficient running of the plant. This is controlled electronically along with the loading of the compressor, relative to the available load.

Multiple System N+1

Smaller DX evaporators are usually multi system. This gives an N+1 redundancy of the plant. Indeed, when one side of a 2 system evaporator is having service work carried out, the other side continues to operate normally. Thinking ahead and allowing for additional capacity is essential when the application is critical, such as, a data centre or a hospital. When a redundant system comes online due to a failure- getting the failed system back up and running is a matter of urgency. For this we offer same day delivery of parts and a fully stocked mobile workshop.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Service Company Condensers

Various configurations are employed to ensure good air flow through the condenser fins. The most popular being a ‘v’ condenser as the surface area is increased with this design. Powerful fans are used to reject the air and heat upwards and away from the chiller. Where system location causes the recirculation of air, duct work can be fitted to direct the air away from the chiller. The pressure is monitored using a HP gauge.

Pressure Transducers

Johnson Controls

A popular kind of pressure transducer that is used on condensers is Johnson Controls. These can be bolted onto the refrigerant discharge pipe to sense the system pressure. They have a 5vdc input that comes into the transducer on a red wire, a black wire is the ground and a white wire is the signal back to the fan speed controller. The transducer has a minimum to maximum range, so a chart can be used to determine if the signal is reading back correctly. On chillers where the transducer is wired directly in the controller- calibration can be carried out to offset the readings.

Keller

Another kind of pressure transducer is the 4-20mA type. It sends a mA signal back to the controller or the fan speed controller. 4mA is the minimum position, so this relates to the minimum of the transducer pressure range.

R134a Refrigerant

R134a refrigerant operates at a lower pressure in a condenser than the other commonly used HFC refrigerants. If you were looking for a chilled water set point of 6°C in the UK ambient for example, the R134a refrigerant saturation on the high side of the system would be around 36°C Latent heat from the water system and heat added into the refrigerant from the compressor are rejected from the condenser. As the refrigerant passes down the condenser tubes, cool air blowing across the outside of the tubes, cools the refrigerant vapour down through the latent heat phase and into a subcooled liquid.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Service Company Compressors

Centrifugal Compressors

This kind of compressor has a lower volumetric efficiency compared with the positive displacement compressors below. This is because the refrigerant is compressed using centrifugal force off the tip of the impeller, instead of being mechanically compressed. The advantage of this kind of compressor is a high mass flow rate of refrigerant. These compressors are used in factories where a large amount of chilled water is required to cool the process. They are also used in countries where district cooling is used. The chillers are arranged in rows in a chiller hall and are piped into the district cooling loop.

Screw Compressors

Oil used to lubricate the bearings is also used to create a seal between the rotors. Computer aided design (CAD) software and computer numerical control (CNC) grinding machines are used in the construction of screw rotors. The shape of the rotors is designed to compress the refrigerant along the screw. The length of the screw that is available to compress the refrigerant can be adjusted with a slide valve. Any stage of loading between 0- 100% can be achieved. This is regulated with a slide valve potentiometer. Screw compressors are very reliable and have a long service life. They also have a low vibration reading which ensures a lower instance of refrigerant leaks around the compressor.

Scroll Compressors

A service free compressor. Service free assuming that the rest of the system is functioning correctly. This kind of compressor relies on oil migration around the system. The oil is entrained along the inside of the pipework, around the system and back to the compressor. An oil level sight glass is fitted into the body of the compressor at the required level. Refrigerant shortage can cause the oil to stay in the bottom of the evaporator, causing a low oil level condition in the compressor. We can be scheduled to attend site to drain the oil, then pump new oil into the compressor.

Compressor Failure

When any of the above compressors fail, you are in safe hands with Maximus Chillers. We have the capability to lift and shift the compressor to our remanufacturing facility for a full overhaul. The reason for the failure is diagnosed to ensure the new compressor does not fail for the same reason. Improving the reliability of your plant and extending its life is what we are all about- if we can reduce your service costs- that makes us happy! All temperatures and pressures are recorded to ensure the replacement compressor goes into seamless operation.

Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere- The MAXIMUS ADVANTAGE™

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Breakdown

Industrial Chiller Service

Chiller Service Company Visit

Chiller Fault Finding & Diagnosis

F-gas Chiller Leak Testing

Chiller Commissioning

Air Cooled Chiller Condenser Testing

To read more about chiller diagnosis hit the Tag at the top of the page.

Read more about pressure sensors on Wikipedia | Click Here


A pile of completed chiller maintenance checklists on a table

Chiller Maintenance Checklist

Introducing a series of in depth news articles, this time featuring the chiller maintenance checklist:

News Article No.1

This article has been written with you- the customer in mind. Read below for practical advice on how to keep your chillers in the best condition.

Each day when you walk round, you can check to see if your plant is starting to malfunction. Become accustomed with the usual readings to help you diagnose the faults.

Here are the things to check for and how to remedy them:

Water System Pressure

Keep an eye on the pressure in the water system.

Small Chiller Maintenance Checklist

On a small chiller, there will be a water outlet pressure gauge. Make a mark on the gauge where the pressure is when the chiller is in good working order. You can use this mark to notice if the pressure is starting to drop off.

Strainer

The most common cause for low water system pressure is a blocked strainer. It is usually a ‘Y’ type with a bolted fitting. With the chiller off and the water system valves closed, unscrew it and check for debris. If it is blocked, make a note of how long it took to block, then add the cleaning of the strainer into the periodic maintenance schedule.

Pump

Ensure the pump rotation is correct by checking that the cooling fan is sucking into the pump. If it is going backwards: isolate electrically, then swap any 2 of the 3 phase wires. Brush down the inlet to the cooling fan to ensure good air flow and a cool pump motor.

Large Chiller Maintenance Checklist

On a large chiller, the water system pressures may be available in the controller- have a look through the menus. The pressure will be measured in bar. Another popular method on a large chiller is a flow meter. This may be a stand alone device on the chiller panel, or on a control panel nearby. It will read in m3/hr. Check to see if the pressure or flow is lower than usual. If so, ring one of our trained professionals.

0161 370 7193

service@maximuschillers.com

Contact Form

Water System Temperature

The chiller should be:

  • Matching the load and running continuously.
  • Loading and unloading in sequence with other chillers.
  • Going through a cycle and achieving set point.

In any case, you will become accustomed with the usual chilled water temperature according to varying load conditions. If the plant is struggling to achieve set point, or is running higher than usual- this is a sign of system faults.

Walk along the chillers that feed the same water system and make a log of the faults showing on the controllers.

Here are the things to check when you have high water system temperature:

Small Chiller Maintenance Checklist

Low Pressure

If the chiller has a low pressure gauge, look to see if the pressure is lower than usual. If so, this is a sign of refrigerant shortage in the plate evaporator. A scheduled visit from one of our trained engineers to carry out a pressure test can be arranged.

Breakers

Look for any breakers that have tripped in the panel. One reset can be carried out by a qualified onsite electrician. If the fault reoccurs- ring our support team. If the scroll compressor has tripped, check to see if the compressor is hot. If so, isolate and do not attempt a restart.

Condenser

A blocked condenser will inhibit the rejection of heat. Brush it down and give it a rinse with water. A common occurrence onsite with some condenser designs is a panel being left off with the chiller running! This happens when the onsite engineers are fault finding another issue with the chiller. The fans will suck through the opening as this is the easiest path. The gauge will be higher than usual as the condenser builds in pressure. A high pressure trip out will occur.

High Pressure Switch

To locate the switch- first identify the discharge pipe. It is the smaller of the 2 pipes on the compressor. The high pressure switch will either be bolted onto the pipe, or a thin pipe will lead from the discharge to the frame of the chiller. In any case, you are looking for a small box with a button and a wire leading to the panel. Press the button and you should hear it click. If this fault reoccurs- ring our technical support desk.

Large Chiller Maintenance Checklist

Suction

Should there be a refrigerant shortage, the controller will display a pre alarm like 'suction limiting' This is the controller preventing the compressor from loading up, so as to prevent a low pressure trip out. As above, one of our team of engineers can be sent to site to resolve the issue.

Discharge

If the controller is showing 'discharge limiting' this is a sign of a condenser issue. A full strip down and cleaning of the tubes may be required. Ring our technical support desk for further advice.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Remote Monitoring

We at maximus chiller can install remote monitoring systems to your chillers so we can fault find and diagnose from a laptop. This means we can give you real time advice over the phone. Now you are accustomed with our chiller maintenance checklist, you can give feedback regarding the plant to assist our engineer.

Parts

For our contract maintenance customers: a range of commonly used parts are kept onsite to reduce downtime. We can give practical, step by step advice on the fitting of parts. We often carry out video calls with our customers, as chiller data plates, parts and components can be easier to show than describe.

Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere- The MAXIMUS ADVANTAGE™

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Glycol Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

To read more about air cooled chiller condensers hit the Tag at the top of the page.

Read more about chillers on Wikipedia | Click Here


Yellow oil drums, ammonia refrigerant cylinders and flammable flushing agent of chiller supplier

Chiller Parts Supplier

Chiller Parts Supplier of Compressors

Centrifugal

As a chiller parts supplier, all kinds of centrifugal compressors are remanufactured in our workshop. With an overhead gantry crane and specialist equipment to hand- Maximus Chillers completes the picture. We have a lift and shift team who are skilled at getting the compressor out of the most awkward locations. A variety of lifting equipment is used, including 3 phase electric hoists and trollies. Our team do this kind of work all the time, so they are accustomed to overcoming all the difficulties and obstacles.

Screw

Screw compressors are remanufactured on the bench. With compressed air and bearing tools- our skilled technicians are seasoned in high tolerance measurements. The bearing clearance and shaft run out are accurately measured and adjusted. This means that the useful life of the compressor is extended, often to beyond the lifespan of the chiller.

Scroll

We have a range of off the shelf Copeland compressors for a fast lead time on process chiller repairs. These can be sent to site on the day using our fast door to door supply chain. We have all the sizes of compressor available. The pipework and mountings can be adapted too. This means that if your compressor is a different make with a longer lead time- our compressor will be fitted and adapted to your machine- fast!

Chiller Parts Supplier of Condensers

Air Cooled

When the condenser on an air cooled chiller is in poor condition- our site survey team will attend to measure up for a new bespoke condenser. This is done free of charge and ensures that the new condenser will fit easily into the old chiller. The exact subcooling requirement of the old condenser is taken into account which is duplicated on to the new condenser. This means a like for like swap can take place even when the old condenser is obsolete.

Shell and Tube

This type of condenser is used on water cooled chillers. It is protected from contaminants by a strainer on the water system. We have these condensers built to order by our bespoke manufacturer. They are shipped to site on an overnight delivery, so we can get straight down to work in the morning. We therefore minimise downtime in the swap out of this part.

Chiller Parts Supplier of Evaporators

Shell and tube are the most popular type of evaporator for large chillers. The low temperature refrigerant is on the outside of the tubes in liquid form. The water is pumped through the tubes, releasing heat from the process and into the refrigerant. This is latent heat as the liquid refrigerant boils off into a vapour. Where the heat exchange does not greatly improve after cleaning, we recommend replacing this part.

0161 370 7193

service@maximuschillers.com

Contact Form

Vibration Eliminators

We have all of the sizes of anacondas on the shelf in our stores. This saves on the delivery time to site when your process is off due to the chiller. Maximus Chillers will get you up and running- fast! We can also fit flexible vibration hoses which achieve the same result as anacondas. Whereas two anacondas are fitted vertically and horizontally, only one, long vibration hose is needed.

Chiller Parts Supplier of Flushing Agent

When things go wrong, we stock a solvent based flushing agent which is blown through the system using nitrogen. The waste product is caught on the far end in drums that come with the kit. This is then returned to the suppliers for recycling.

Refrigerant Economizers

These are another term for a subcooler. If the refrigerant is further subcooled after the condenser- the system will run more efficiently. This part usually takes the form of a plate heat exchanger with an expansion valve providing the refrigeration effect needed to further subcool the remaining liquid.

Chiller Parts Supplier of Pressure Transducers

We can make temporary repairs to faulty pressure transducers using our test equipment. This will keep your plant running while the part arrives on site. Then we can get your chiller up and running with the correct readings in the controls. This will assist your onsite maintenance engineers in giving us useful readings when we are in communications over the phone.

Chiller Parts Supplier of Ammonia and HFC Refrigerant

A full selection of refrigerants are available including: anhydrous ammonia, R407c, R134a and R410a. These refrigerants come in small 12kg, midi 26kg, large 56kg and bomb 800kg sizes. Our vehicles are equipped with tail lifts and lifting gear to facilitate delivery. We can therefore arrange the delivery and collection of refrigerant at your site, free of charge, anywhere in the UK. For our overseas customers, we arrange the transportation from the local suppliers.

Chiller Parts Supplier of Oil

Low, medium and high viscosity oils in 5ltr cans and 20ltr drums are ready for shipping from our storage area. It is critical to select the correct grade of compressor oil as bearing wear and reduced service life will result. We take regular samples of this oil to see if things are starting to go wrong in the compressor. We can then nip these problems in the bud, giving you dramatic savings.

Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere- The MAXIMUS ADVANTAGE™

Related Articles:
Screw Chiller Compressor Maintenance

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Scroll Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

To read more about chiller evaporators hit the Tag at the top of the page.

Read more about the centrifugal vapour compressor at the Institute of Refrigeration | Click Here


Carel controller and tick sheet during chilling plant maintenance visit

Chilling Plant Maintenance Visit

On this chilling plant maintenance visit, particular attention was made to compressor loading. This was to ensure that the compressors are capable of operating at 100%. With summer now here- we want the plant capable of running at full capacity.

Controller Loading Timer

On start up, the controller goes through a timer, this is to prevent the compressor from loading up too quickly, achieving set point and going off. With available load, the compressor would start back up and go into a short cycling condition. With 5 minute intervals, the controller brings System 1 screw compressor on at 25%. Then System 2 screw compressor on at 25%. In stages, the controller loads up the compressors until it matches the load.

Compressor Loading Solenoid Coils

These are 24vac. The controller sends out a run signal through the solenoid coil which magnetises the lift valve inside.

0161 370 7193

service@maximuschillers.com

Contact Form

Compressor Loading Solenoid Valves

As the valve lifts, discharge pressure oil passes through a channel and pushes the slide valve open a 25% stage. There are 4 valves for the 4 stages.

Chilling Plant Maintenance Visit at 100%

The chilling plant being maintained on this visit was now running at 100% on both systems. The system readings can easily be read by following the menu in the Carrel controller. Superheat and subcooling readings were found to be within normal operating limits. Also, a good read back was recorded on the water system.

Compressor Unloading

At the end of the day, the three way valves on the air handlers closed down according to the BMS schedule. This meant that the water was diverted away from the heat exchangers in the air handlers. This return water had not picked up any heat, so the controller started unloading the compressors. It did this through 75% to 50% then 25% until the water system was down to setpoint.

Off Cycle at Chilling Plant Maintenance Visit

The BMS stops the chiller with the remote start/ stop signal. Should the BMS malfunction, the chiller would stay off most of the night anyway. The water system pump adds heat into the water system. Therefore, every so often enough load would be available to bring one system on at 25% for a short while.

To read more about chiller compressor systems click the Tag at the top of the page.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Chilling Plant Controls Maintenance

R134a Chilling Plant Maintenance

Chiller Maintenance Checklist

Glycol Chiller Maintenance

Read all about solenoid valves on Wikipedia | Click Here


An engineer filling blue oil drums during industrial chiller maintenance

Industrial Chiller Maintenance

Reciprocating Compressors

Industrial chiller maintenance including a reciprocating compressor with 8 cylinders. They always have an even number of cylinders so that the compressor is balanced.

Open Drive

Because the refrigerant being used in this article is ammonia, the compressor is open drive. This is because ammonia corrodes the copper windings of the electric motor. An open drive compressor needs a shaft seal to prevent oil and refrigerant escaping from the system. These shaft seals are prone to wearing down and leaking. They have two mating surfaces that have a finish so smooth that it is like glass. Any oil leaking out of the system collects in a pot. This pot is monitored for the rate at which it fills up and so the deterioration of the shaft seal can be monitored. The swap out of the shaft seal can be arranged at a convenient time. This evolves the splitting of the shaft coupling to allow access to the seal.

Semi Hermetic

This means that the electric motor is internal to the compressor. Hermetic meaning sealed and semi meaning that you can bolt components off, such as, the cylinder heads. There is a significant advantage with this type of compressor design as there is no shaft seal. The compressor motor windings are also cooled by the suction vapour returning to the compressor from the refrigerant system. This compressor design is used with HFC, HFO, CO2 and Propane refrigerants. There are some semi hermetic compressors that are suitable for ammonia where the windings have been sealed from the refrigerant.

Scheduled Strip Down

This kind of compressor has a lot of moving parts that need to be replaced according to the run hours of the compressor. Failure to do so will lead to the compressor going out of balance and an expensive compressor smash up occurring. Usually during a smash up, a connecting rod will fly off causing oil to spurt out from the gallery. This causes a low oil pressure fault which stops the machine. One smash up which I have seen involved all the con rods staying on and flailing round the inside of the compressor. One cylinder was still working, the compressor still running and a sump full of different sized triangle pieces of metal! This highlights the importance of scheduled maintenance.

0161 370 7193

service@maximuschillers.com

Contact Form

Major Industrial Chiller Maintenance 

On a recent Major maintenance visit, the scheduled oil change was carried out. The required oil being selected by our oil analysis process to the correct viscosity for a Grasso reciprocating compressor operating at a 1°C saturation.

Oil Drain Out During Industrial Chiller Maintenance

The compressor was valved off from the rest of the system. The standing pressure of the vapour in the vessel was 5.8 bar. On the bottom of the sump is located an oil drain port, this is because it is the lowest part of the system. Using hoses and a valve, the oil was drained into empty oil drums.

Oil Pumping during Industrial Chiller Maintenance

Our engineer removed the old oil for recycling, then lifted the new oil to the work location. He used his portable oil pump to pump the oil in using the same port from which the oil was drained. The oil came to the correct level on the oil sight glass and the vapour was bled from the oil filter so that the compressor was primed with oil. When the system starts, the oil pump pushes the oil through to the cylinders of the compressor.

Industrial Chiller Maintenance Monitoring

The oil heater was switched on until the oil was 46°C. The chiller was then started and run tested. The Delta P across the oil filter was found to be nominal at 0.5 bar. The oil level remained at the correct level as the three way valve opened to the oil cooler. The oil cooler, in turn being cooled by a cooling loop which uses some of the tubes on the air cooled condenser.

0161 370 7193

service@maximuschillers.com

Contact Form

Industrial Chiller Maintenance and the MAXIMUS ADVANTAGE™

Any Chiller

We work on all kinds of chillers from the smallest Italian process chillers, through to large air cooled chillers and centrifugal chillers used for industry.

Any Problem

Problems are our bread and butter- that’s what we do best! Whether you require centrifugal compressor remanufacturing, or the system drying out after a burst heat exchanger- it’s all in a day’s work.

Any Part

We have an excellent supply chain where we pride ourselves on sourcing any part for your chiller. Where a part is no longer manufactured or is not available- we fit a different part. A chiller is just a chiller at the end of the day- we can achieve the same or better design characteristics and efficiency with a different part.

Any Refrigerant

HFC refrigerants are being phased down but are still the most popular variety. They are being superseded by HFO refrigerants which will become more popular over the coming years. We are also adept in the handling of natural refrigerants, such as, ammonia, propane and carbon dioxide.

Anywhere

When you do something as niche as what we do- you cannot expect to just work outside your back door. With blue chip customers around the UK and around the world- nowhere is too far for Maximus Chillers.

To read more about reciprocating chiller compressors hit the Tag at the top of the page.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Air Cooled Chiller Condenser Maintenance

Chiller Maintenance Checklist

Glycol Chiller Maintenance

Planned Preventative Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

Follow this link to read about polyolester oil on Wikipedia | Click Here

 


Engineer carrying out process chiller service with yellow and black cylinder

Process Chiller Service

Maximus Chillers has just carried out process chiller service to a flooded evaporator. The refrigerant seal on a four bolt, flanged coupling had been found to be leaking liquid refrigerant. There was no possibility to valve off that section of the machine, as the flooded evaporator is the storage vessel for all of the charge of the system in its liquid phase.

Refrigerant Recovery during Process Chiller Service

Our high capacity refrigerant recovery unit was set up next to the machine to carry out the task. 55 kg of refrigerant was recovered in a short time into our recovery cylinder. This refrigerant was collected for recycling after the job was completed.

Stainless Steel

Our unit is made from stainless steel because this metal works well with ammonia.

Condenser for Process Chiller Service

The condenser is made from tubing which is connected to ‘u’ bends on either end. These ‘u’ bends send the condensing refrigerant back along the next tube in the opposite direction. This process, back and forth allows time for the refrigerant to condense into a liquid. Fins are pressed around the tubing to increase the surface area and help to dissipate more heat from the refrigerant. A condenser fan is fitted to suck the air through the fins and so reject the heat.

Reciprocating Compressor

A four cylinder reciprocating compressor is fitted to the unit to provide the pressure difference to pump the refrigerant into the above mentioned condenser. It has an air cooled electric motor fitted which is open drive. This is because ammonia would corrode the windings of the motor if a semi hermetic compressor were to be used. Semi hermetic meaning that the windings, stator and rotor of the motor would be internal to the system. The motor is fitted in the vertical position with the four cylinders opposing each other on the central crank shaft.

Controls for Process Chiller Service

For safety reasons controls are fitted to the unit. These include:

HP Switch

If the recovery cylinder were to become over filled, the pressure would build up to a dangerous level. The TARE and the ullage need to be calculated prior to the job to prevent this from happening. The below mentioned liquid pipes have been designed with pressure issues in mind, but somewhere on the system would be the weakest point. This would burst causing a catastrophic refrigerant leak. The whole charge of the machine and all the refrigerant in the recovery cylinder would leak to atmosphere. The HP switch is set by the engineer on site to the correct level given the ambient conditions. This takes into account the temperature of the refrigerant and the safe operating pressure of the vessel.

0161 370 7193

service@maximuschillers.com

Contact Form

Refrigerant Liquid Pipe

Steel Braided

The refrigerant in its liquid phase is pumped into the above mentioned unit down a steel braided liquid pipe. The steel braiding is to provide additional protection from the pipe being damaged on the outside. Damage like being driven over by a forklift truck, or having sharp objects coming into contact with it. Also, the braiding helps to prevent bursts when pressure builds up on the inside. This can be due to a restriction, malfunction of system components or vessel overfilling.

PTFE

The inner part of the pipe is PTFE. Other types of plastics and compounds corrode due to the toxicity of ammonia. Polytetrafluoroethylene is the chemical name for this compound, it is a fluorocarbon solid and is considered to be non reactive.

Fittings

There are various metric and imperial thread types that can be used. This depends on the fitting size on the machine and the fitting size and type going onto the recovery unit. We carry a wide range of fitting types to step down and step up in size. We can go between male to female types and use male to male and female to female where necessary. We carry adaptors to go from metric to imperial thread types.

Remote Access during Process Chiller Service

We carry an extensive stock of liquid pipes that can be connected end to end to provide remote access. We will always try to get the recovery equipment as near as possible to the plant, but when this cannot be achieved, we can arrange access up cat ladders or the side of a building. We can use our lift and shift team to arrange the hauling of all the required equipment and ancillaries to any location. Just part of what we call the MAXIMUS ADVANTAGEAny Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere. Contact our office for prices for the above mentioned pipes.

Process Chiller Leak Service

The flanged coupling was unbolted and the failed refrigerant seal was removed. The new seal was fitted from our full range of sizes that we keep on the shelf in our stores. Our engineer bolted the flanged coupling back up to the correct torque setting.

Pressure Leak Test

A nitrogen pressure leak test was carried out to ensure the integrity of the system with the result being a pass.

Dehydration Process

As the system was open to atmosphere, air had got into the system which carries moisture content. The moisture and non condensables were removed down to a near perfect vacuum using one of our high capacity vacuum pumps.

0161 370 7193

service@maximuschillers.com

Contact Form

Charging of Refrigerant

The photo shows the charging of a cylinder of refrigerant into the system in its liquid phase. The cylinder has a dip tube fitted for ease of handling. Once the pressure in the system and the cylinder equalized, remaining refrigerant was drawn into the system during the operation of the plant.

Run Testing

The sight glasses and level glasses were found to be at the optimum level under the normal running conditions of the plant. As it is a flooded system, there was found to be a low superheat value. A high subcooling value was achieved with the use of a subcooler. Our engineer monitored a full cycle of an hour and a half: compressor temperatures and oil level were found to be within normal operating limits.

Remote Service Monitoring of Process Chiller

The process chiller can be remotely monitored via a data uplink through the internet. Our office continued to monitor the plant for some days as it went into seamless operation.

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Fan Deck Service

Packaged Chiller Service

Chiller Service Company

Chiller Breakdown

Industrial Chiller Service

Chiller Service Company Visit

Chiller Fault Finding & Diagnosis

F-gas Chiller Leak Testing

Chiller Commissioning

Follow this link to purchase BESA pressure testing technical bulletin | Click Here


Two dark green centrifugal chillers undergoing maintenance in plant room

Centrifugal Chiller Maintenance

At the beginning of the year we completed centrifugal chiller maintenance for one of our customers in America. A last overseas trip for the moment given the current world lockdown. The machines in the photo chill water that is pumped around a university campus.

Centrifugal Chiller Maintenance of Redundant System

The plant has a water cooling shell and tube evaporator and a water cooled shell and tube condenser. It has been designed according to the N+1 principle: N being the amount of cooling required and 1 being that same amount of cooling again. Each chiller has enough capacity to satisfy demand. Given the large size of the campus, this principle was critical to keeping the University functioning should system failure occur. The chiller on the right was the lead chiller on arrival. After taking detailed readings during the maintenance, our engineer switched that chiller over into being the lag chiller and took readings from the chiller on the left. He rotates the lead/ lag of the chillers on each visit to balance the run hours of the compressors.

Volumetric Efficiency

Centrifugal chillers have a lower volumetric efficiency compared with positive displacement compressors such as screws and recips. This is because the impeller does not mechanically compress the refrigerant like a piston in a reciprocating compressor. This kind of compressor relies on centrifugal force to spin the refrigerant off the tip of the impeller and onto the next stage. The refrigerant is then discharged from the compressor.

0161 370 7193

service@maximuschillers.com

Contact Form

Mass Flow Rate

The above is more than compensated for with a high mass flow rate. That is to say: a high volume of refrigerant circulates around the system at its operating density. A large capacity machine is cost effective when considering energy efficiency and centrifugal chiller maintenance costs.

Gantry Crane for Centrifugal Chiller Maintenance

The gantry crane in the picture is available to aid with the lift and shift of the compressor, should compressor failure occur. Maximus Chillers are specialists in the overhaul of centrifugal compressors. We can arrange the lift out, transportation, strip down and reassembly of your compressors. All of our strip downs come with a 12 month warranty to give you peace of mind and confidence in our ability.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Chiller Maintenance Checklist

Glycol Chiller Maintenance

Planned Preventative Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

Follow this link to read about centrifugal compressors at The Engineering Mindset | Click Here


R134a chilling plant maintenance showing screw compressor and oil separator with tick sheet and digital thermometer on top

R134a Chilling Plant Maintenance

We recently carried out R134a chilling plant maintenance at our customer’s factory in the North West. The chiller is 600kw with 2 single compressor systems. It has an ‘in house’ controller on it with occasional spurious trip outs. We are working with the problem so far, but an option if the problem persists is to fit a reliable, cheap, off the shelf controller. The factory requires a process water temperature of 6°C. The plant is around the middle of the lifespan and has been properly maintained.

Unlock Controller during R134a Chilling Plant Maintenance

The customer had accidentally locked the controller by pressing the wrong buttons. The machine still functioned as it should, but the customer was unable to modify User settings or look at the readings. Our engineers carry a book with an extensive list of information for any controller which has been built up over time. The procedure was followed to unlock the controller, then the settings were checked.

0161 370 7193

service@maximuschillers.com

Contact Form

R134a Chilling Plant Sensor Maintenance

The sensors can be offset to compensate for a sensor reading out slightly. No offsets were saved and the sensors all read to within a degree or two of our digital thermometer. Our engineer then checked the sensor locations to ensure they were fitted correctly and insulation had not deteriorated.

Fan speed Controllers and Subcooling

During the R134a chilling plant maintenance, particular attention was paid to the fan speed controllers and the subcooling of the refrigerant. This is because of occasional spurious high pressure trips. All the wiring was tightened and the plugged connections were checked and tested. The controller sends a variable run signal to the fan speed controllers. This is worked out from the analogue input signal from the high pressure transducer. If the problem persists, we will have to look into fitting more reliable head pressure controls.

Compressor Slide Valve

The oil solenoids which push and pull the compressor slide valve were operating correctly. The controller sends volts to the solenoids to control the position of the valve. A slide valve potentiometer sends feedback so the controller can work out the percentage position of the valve.

To read more about chiller control systems click the Tag at the top of the page.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Chilling Plant Maintenance Visit

Chilling Plant Controls Maintenance

Chiller Maintenance Checklist

Glycol Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Preventative Chiller Maintenance

Follow this link to read more about pressure sensors on Wikipedia Click Here


Green chiller panel with doors open, showing contactors and PCBs during water chiller maintenance

Water Chiller Maintenance

Maximus chillers provides water chiller maintenance to all kinds of machines. Some of which have kilowatt hour meters fitted. This means we can monitor the reduction in energy consumption, directly as a result of our maintenance being carried out.

Efficient Water Chiller Maintenance

Maintenance is carried out to ensure every aspect of your chiller is running efficiently. We believe our maintenance checklist is the best in the industry. It looks in detail at the running conditions of the plant, component adjustments and the parameters in the controls. The checklist is used to assess if there are problems that are starting to occur before a safety shutdown happens. Below are some of the issues that we keep on top of to increase the efficiency of your plant.

Shell and Tube Insulation

The build up of dirt acts as an insulator in shell and tube heat exchangers. These are used for the evaporation and the condensing of the refrigerant.

The Evaporator

In the evaporator, should the tubes be fouled, there will be a reduction in latent heat absorbed into the system. This will cause the plant to stay on longer and use considerably more energy. Should the tubes become considerably fouled, the chiller will malfunction and eventually system shutdown will occur.

The Condenser

In a shell and tube condenser, the reverse of the above will occur. Tube fouling, acting as an insulator, will prohibit the rejection of heat from the system. The head pressure control will open the condenser controls to try and assist in heat rejection. Heavy fouling will cause an increase in the consumption of energy. Eventually a safety shutdown will occur causing loss of production.

0161 370 7193

service@maximuschillers.com

Contact Form

Compressor Loading during Water Chiller Maintenance

If the loading of the reciprocating compressors is faulty, the plant will not be able to effectively match the load.

Over Loading

Too much loading may occur, causing the water chillers to achieve set point too quickly. The plant will then go through the off cycle. This means that the plant will have to load back up, using more energy than matching the load continuously.

Under Loading

Should the plant be unable to load up to the required level to match the load, this will cause the water temperature to creep up and the lag chillers being called for to match the load. More chillers running than necessary dramatically increases energy consumption.

Related Articles:
R134a Chilling Plant Maintenance

Air Cooled Chiller Planned Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Chiller Maintenance Checklist

Planned Preventative Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

Visit the Refcom site to read about leak checking during water chiller maintenance | Click Here


Process chiller maintenance of grey Italian chiller with cover removed

Process Chiller Maintenance

Maximus Chillers recently carried out process chiller maintenance to an Italian machine.

Process Chiller Maintenance for Water Level Sensor

The process chiller has a water treatment schedule, but the water level sensor needed maintenance. This is because the three probes of the sensor were not completing continuity. The probes complete the continuity from the wire going into the sensor, along the probe, then to another wire back to the controls of the chiller.

Low Water Probe

If the controls loose continuity to the low water probe, the alarm is triggered and a call out is arranged to resolve the issue.

Correct Level Probe

In normal operation, the correct level probe is activated and the chiller runs as normal.

High Water Level Probe

Should the high water level probe be activated, again the alarm is triggered and a call out arranged.

0161 370 7193

service@maximuschillers.com

Contact Form

Process Chiller Maintenance Call Out

As we were already on site to carry out the maintenance, there was no need to arrange a call out. We soaked the sensor for an hour in a special a decontamination chemical that has been designed to restore the probes. That done, the rest of the maintenance was carried out including the tightening of the wiring and motor connectors. It was possible to do this on this visit as the factory was not in production.

Run Testing

All readings around the chiller were taken when the factory went back into production. We found the fridge system to be working with optimum efficiency, meaning that the chiller will use the optimum amount of electricity. Efficiency is a great concern to a factory as they want to reduce their carbon footprint as much as possible.

Related Articles:
R134a Chilling Plant Maintenance

Water Chiller Maintenance

Air Cooled Chiller Planned Maintenance

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Chiller Maintenance Checklist

Planned Preventative Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

Follow this link for the IOR celebration of chiller service engineers Click Here


Ammonia refrigerant cylinder being winched up a cat ladder using a block and tackle

Industrial Refrigeration Ammonia

The industrial refrigeration ammonia visit was at a site in Aberystwyth. We look after 2 ammonia chillers for a blue chip customer. They are 10 year old chillers that have been designed to need ongoing attention. Quite easy job as the faults they go into are reoccurring round in a circle. They have previously had the same problems.

Ammonia Shaft Seal for Industrial Refrigeration

The shaft seal had started to leak ammonia. It was replaced by removing the shaft seal cover, splitting the coupling and sliding the shaft seal over the shaft. After removing the non condensables, we reintroduced the ammonia back into the compressor- now the 'o' rings leaked.

Leaking Industrial Refrigeration Ammonia 'O' Rings

Leaks on ‘o’ rings occur because they become flattened and plastic like. This is caused by heat around the high side of the screw compressor. When there is pressure in the system- the oil if forced against the gap- making a seal. After the ammonia refrigerant had been handled- the oil ran away- causing a leak when the ammonia was reintroduced.

0161 370 7193

service@maximuschillers.com

Contact Form

Lift and Shift Visit

The pipework and ancillaries had been removed from the compressor prior to the visit. Our lift and shift guys arrived and set up their lifting equipment. They raised the compressor and manoeuvred it on across the roof. They then manoeuvred it up then down some steps. They used lifting equipment to get the compressor, end on- down a cat ladder.

Compressor Strip Down

It is always better to strip down this kind of compressor in a workshop- on a bench with compressed air and all the tools nearby. We unbolted the castings and slid the screw out. The various castings being laid out in a line. We replaced the ‘o’ rings for new the rebuilt the compressor.

Industrial refrigeration ammonia being charged by an engineer wearing breathing apparatus and gloves
Ammonia refrigerant being sucked into the low side of a flooded evaporator

Ammonia Refrigerant Charge

Part of the ammonia refrigerant had been handled during the visit. This left the compressor pipework, compressor and the oil separator open to atmosphere. The non condensables were evacuated. In the photo we are lifting the cylinder up a cat ladder into the plant room. From there it needed to be man handled up some steps, down some steps and out onto the roof. We charged the ammonia plant with liquid ammonia until the superheat and subcooling values were within industry known limits. The sight glass levels and condition were monitored too.

Related Articles:
Industrial Refrigeration Sludge

Industrial Refrigeration Oil

If you would like to buy an introduction to ammonia refrigeration from the iiar | Click Here


Translate