Air Cooled Chiller Condenser Testing

Two large air cooled chillers during condenser testing

Air Cooled Chiller Condenser Testing

We at Maximus Chillers have recently carried out air cooled chiller condenser testing at a new 3 year maintenance contract in the North West. The last of 4 systems had gone down on the morning that we first attended site. 1.2 MW of cooling had been lost which resulted in the water system temperature rising to 31°C. These chillers are used to cool an office block, so we wanted to get some of the systems up and running as quickly as possible…

News Article No.16

Air Cooled Chiller Condenser 1 Testing

One of the systems was disabled due to a condenser fan failure. 1 of 5 fans was found to be seized and disconnected. Fan speeds have sufficient redundancy built in to allow for a high ambient and a partially blocked condenser. There was a high ambient condition, but the condenser was found to be clean. Therefore, our engineer decided to run test the system and monitor the condenser pressure…

Fan Speed Transformer

3 fan speeds available on this chiller- low, medium and high. The fan speeds are achieved using a transformer which makes a different voltage for each fan speed. This is quite a good way of controlling the condenser pressure, as all of the fans run smoothly together. The program looks at the condenser pressure using a transducer, then selects the required fan speed.

Medium Fan Speed

As expected, the chiller program selected the medium fan speed. This provided the required saturation pressure in the condenser and so adequately subcooling the refrigerant.

Compressor Protection

All of the system pressures and temperatures were nominal, so the compressor was protected. There was a good oil return and sufficient cooling to the suction housing from the refrigerant. This cooling ensured that the internal motor windings did not overheat.

Monitoring

Having got this system away- our engineer monitored the water system temperature which started to come down. More cooling was required, however, to get the water system temperature down to set point…

0161 370 7193

service@maximuschillers.com

Contact Form

Air Cooled Chiller Condenser 2 Testing

Another system had been the only system running for some time.

Blocked Condenser

Grass pollination had caused a covering of organic material to accumulate on the condenser. The increased head pressure had caused the high pressure switch to trip. This type of material was easy for our apprentice to remove, as it clumped together when brushed.

HP Reset

The high pressure switch was reset and the system was run tested. It did not trip again, but a high pressure condition still persisted in the condenser.

Chemical Clean

Therefore, our engineer decided to carry out a chemical clean. After the whole of the ‘v’ type condenser was cleaned- the pressure came down a little.

Non Condensables

This system stayed running, but in the high fan speed. On the upcoming maintenance visit, a refrigerant diagnosis will be carried out to assess whether there are non condensables in the system. If this is the case, a false reading of subcooling will be recorded, as the non condensables throw out the calculation.

Cool Building

With 2 systems now running, the water system got down to set point. Our customer was really happy as the situation had gone from: office workers walking out of the building- to a cool building before 10 o’ clock on the first day of the contract.

Air Cooled Chiller Condenser 3 Testing

The third system had been on pressure test for the past 2 months with the condenser valved off. There was still pressure in the system, but our engineer decided to confirm the pressure test for himself. He did this by leaving it on pressure while having a drive round the suppliers. Several hours later, the pressure had remained constant, so he was able to start the evacuation process. After this was completed, the system was recharged and run tested. Now there were 3 systems up and running.

0161 370 7193

service@maximuschillers.com

Contact Form

Air Cooled Chiller Condenser PRV Testing

The pressure relief valves on the condensers have recently been changed. Industry guidelines state that they should be tested or replaced every 5 years. There is no guarantee that the PRVs will re seal satisfactorily after they have been tested. Therefore, in practice they are usually replaced. We inspected the date of the replacement, the burst pressure, the associated certification and paperwork- all was found to be satisfactory.

Air Cooled Chiller Condenser 4 Testing

The fourth system has a leak on the condenser with some refrigerant remaining in the system. This refrigerant will need to be decanted on a subsequent visit using a pump out unit and a recovery cylinder.

F-gas Leak Testing

The entire system will be pressure leak tested to identify the location of all leaks. Then, the leaks will be repaired using oxy-acetylene. After this, the system will be pressure tested to ensure its integrity.

Dehydration

Then, the dehydration process will be carried out. The achievable pressure of the vacuum pump will be tested and recorded. Evacuation will be carried out until this recorded pressure is achieved. Our engineers are issued with a powerful 10 cfm vacuum pump to speed up this process. This system will then be recharged and its operation tested.

Air Cooled Chiller Condenser Testing and Calibration

One of many tests that we will carry out on the upcoming maintenance visit is condenser transducer calibration. Transducer readings are not linear, so care will be taken to achieve an accurate calibration. A password will be entered into the controller to gain access to the required menu. Then, each of the transducers will be adjusted. The result of this means that accurate diagnosis can be carried out and the correct subcooling readings can be recorded.

The above is just part of the service that we provide to you- the customer! Having the capability to do anything and to extend the life of your chillers is part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere.

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Breakdown

F-gas Chiller Leak Testing

Chiller Fault Finding & Diagnosis

To read more about air cooled chiller condensers hit the Tag at the top of the page.

Read more about pressure sensors on Wikipedia | Click Here


Chiller commissioning of a large white chiller with the pipework still disconnected to the buffer tank

Chiller Commissioning

Chiller commissioning is carried out to resolve any issues and get a machine running with optimum efficiency. The first three days are the most important part of a chiller’s life. This is because a chiller will carry along with it any problems that were not resolved at the start.

News Article No.15

New Chiller Commissioning

We at Maximus Chillers are the approved supplier for various manufacturers as their first choice to commission their new chillers. This is because we have earned a reputation within our industry for the capability to do anything- this is just part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere.

Used Chiller Commissioning

Our customers are concerned with lowering their carbon footprint and reducing the environmental impact made by cooling systems. One of the ways they do this is by purchasing used chillers which still have 10 years of life in them. This means that there is a dramatic saving in the carbon emissions that would have been released during the manufacture of new chillers. Used chillers often come from factories that have been re located. They also come with a full service history.

Chiller Commissioning on Site

The chiller in the photo is about to have the commissioning process carried out. All that is left to do is for the onsite engineers to fit the Inlet and Outlet pipes to the evaporator. Then, fit the water system pumps and other water system components.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Commissioning Day 1

A cup of coffee and a good look round before staring anything. There were still a few nuts, bolts and washers left lying around by the onsite engineers, so a good opportunity for some house husbandry. This done, our engineer switched the main power supply on to the chiller…

Flow Fail

The machine went immediately into the flow fail fault. Then, he powered up the chiller pump set and the process pumps that feed the factory. The flow fail alarm cleared- so that was the flow switch ticked on our detailed Commissioning Sheet.

Line Voltage

He then checked the 415v power supply to the chiller which gave a good read back and balanced phases. Then, he checked the volts, amps and rotation on the pumps which also gave a good read back.

Buffer Tank Level

The buffer tank auto fill sensors had been positioned incorrectly. He adjusted them to the correct level, the mains water auto fill started and the tank filled to its set level.

Water System Leak

A small leak was found in between the outlet pipe from the buffer tank and the inlet of the process water pump. Our engineer rang one of the onsite engineers who arrived to tighten the connection.

Tighten Wiring

There hadn’t been an opportunity to tighten the wiring for some time as this chiller had been in continuous production in another part of the factory. Each wire around the chiller was tightened including the panel, the fan decks and the motor terminals on the Bitzer screw compressors.

Chiller Commissioning Day 2

The application and set point were different for the process at the new location of the chiller. Therefore, the controller was interrogated using a password to access the parameters. The parameters were modified, one at a time, until they came in line with the customer’s requirements.

Remote Controller

A remote controller had been fitted in the factory near to where the process workers carry out their duties. This was so that they do not have to walk outside to monitor the running of the chiller when they are also monitoring the process. Simultaneous monitoring of chiller loading, faults and water temperature is needed, as well as the monitoring of the process temperatures and production rates. The production rate can be slowed down if the chiller is in a fault condition. This is so as to balance against the process chilled water temperature.

Display Fault

A fault was showing on the remote controller display that was not showing on the chiller controller. After following the diagnosis and consulting the wiring diagram, the fault was traced to three wires that had been connected in the wrong order- an easy fault to rectify.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Commissioning Day 3

Having sorted out the above, it was time to run the chiller up in anger…
A time was selected for start up when maximum load was available from the factory. This was to ensure that the machine could cope and to show up any problems.

System 1

This system started at 25% capacity and loaded up through each stage until it reached 100%.

Oil Level

A low oil level was recorded on the oil sight glass. Therefore, our engineer carefully monitored the compressor amps, temperatures and pressures to see if the compressor was starting to leave its nominal operating conditions. Bitzer screws are a high quality and very robust compressor, so the readings stayed good until the oil level returned.

System 2

This system then started and loaded steadily to 100%. All of the chiller readings were taken and were found to be within standard industry guidelines.

Load Matched

As the chiller started to near the set point, both compressors started to unload to match the load. The load can vary according to what the process engineers are doing at the time, so proving the compressor loading was critical to the efficient running of the plant.

Scheduled Maintenance

With the Commissioning Sheet filed in the cabinet, the next scheduled maintenance visit was talked through with the customer. There are 3 minor visits and 1 major visit during the year. The major visit is scheduled to take place during the winter. This is because there is more time available to carry out the periodic oil and filter changes.

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Breakdown

F-gas Chiller Leak Testing

Chiller Fault Finding & Diagnosis

To read more about chiller electrical faults hit the Tag at the top of the page.

Read more about chiller commissioning at Safework Method of Statement | Click Here


Open chiller controls panel showing PLC, relays, contactors and wiring

Chiller Controls

Chiller controls can be remotely operated and monitored, but in this article, we will be looking at chillers operating in local.

Each chiller has a panel where the lead or the lag chiller can be switched from. They have N+1 redundancy built in, so one of two chillers will normally be in standby with the other one running. The chillers in the photo are equipped with kilowatt hour meters because the customer wants to monitor their efficiency. He has targets to meet and wants to gauge the effect that our maintenance has in reducing his energy costs.

Condenser Pressure

The condenser pressure control is external and stand alone from the panel.

Transducer

A transducer is fitted to the discharge pipe near to the compressor. This gives a 0 to 5vdc control signal to the fan speed controller which is bolted to the frame. There is a minimum and a maximum value on the transducer, so the FSC is programmed to work out the pressure from the voltage.

Fan Speed Controller

415v on three phases are the input to the FSC. It uses solid state thyristors to regulate the output to the fans. This is according to the demand received by the transducer. Solid state means that all the parts are electronic with no moving parts. Fan speed controllers are really good at extending the life of the fans. This is because all of the fans operate together- smoothly and reliably.

Chiller Controls Digital Inputs

There are three essential digital inputs to the controls of any chiller. All of them have a volt signal out to them, which returns back to the panel. If there is a fault- the volts drop out.

LP Switch

This protects the chiller from a low pressure condition. Compressor and evaporator failure would result, so this device is set below the running pressure of the system, but high enough to offer protection.

HP Switch

If the head pressure control mentioned above were to fail, this device would save the chiller from damage from excessive pressure in the system. Components or the pressure relief valve can blow causing a catastrophic refrigerant leak.

Flow Switch

This device detects a lack of flow in the water system. Serious system failure would result if this part is not maintained properly. It needs to be periodically tested and adjusted at regular intervals.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Controls Analogue Inputs

The essential analogue inputs on a chiller are the Water In and the Water Out sensors. These are usually NTC (negative temperature coefficient) that is to say: if you hold one in between your fingers and warm it up- the resistance will start to drop off. They usually read in kilo ohms which can be read on a standard multi meter. The program looks at these two sensors and using an algorithm, it calculates the loading requirement of the compressor. They can read incorrectly, so a sensor offset function is available in the software for adjustment. This is just one of the many checks and procedures that we carry out during our maintenance visit.

Chiller Controls Relays

In the photo you can see wires from the various devices around the chiller, wired into a row of relays. These, in turn, are wired into the white relay board at the top. This relay board has several expansion boards linked into it which are held together with an electrical ribbon. Next, the relay board is wired into the PLC... 

Chiller Controls PLC

The reason for these steps in between a device and the PLC is for protection. Sensitive electrical components can be blown due to an earth shortage. At each stage there is a volt drop from 240v to 24v and then to 5vdc.The programmable logic controller is the nerve centre of the chiller. This is where all the inputs go to and where all the digital outputs are sent from. The controller on this chiller is Beijer Electronics- it comes blank from the factory. User keys to operate the chiller are positioned below the display. It can be programmed to run most chillers and indeed it is often seen in factories running anything. A laptop plugs into it and the software for the chiller is uploaded. On one visit, we found a fault with this controller. We bubble wrapped it and took it to our electronics laboratory at Head Office. The issue was easy to resolve- it was just dust tracking across the back of the PCB and so corrupting the program.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Controls Digital Outputs

The main digital outputs on this chiller are:

Compressor Run Signal

240v is sent to the compressor starter contactors. There are three: Star (lower amps for a soft start) then a timer switches over to Delta (higher amps for a more powerful running of the compressor) On the other end of the compressor windings is the Line contactor. This contactor runs with both the Star and the Delta contactors.

Float Valve

This is a camber where the level of refrigerant which is coming in from the condenser is detected. The level is transmitted to the PLC, where the program sends a signal to the expansion valve. It opens to the correct degree according to the load on the chiller.

Slide Valve

The compressor can run at 0% with the slide valve shut. When load is sensed from the Water In and Water Out sensors by the controller- the slide valve opens up. The position of the slide valve is detected by a potentiometer. This is calibrated from a minimum to a maximum position. The signal is 4-20 mA which the controller translates into the position of the slide valve.

MAXIMUS ADVANTAGE™

Whatever the problem with the controls, we can find a solution to resolve it. With years of industry experience and a fast supply chain, we offer a service that is second to none. Being able to retrofit is part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere.

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Scroll Chiller Compressor Maintenance

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

To read more about chiller control systems hit the Tag at the top of the page.

Read more about Chiller Control Basics on the Engineering Mindset | Click Here


Carel controller showing R134a refrigerant readings during preventative chiller maintenance

Preventative Chiller Maintenance

We at Maximus Chillers will optimise the efficiency and take years off the life of your plant with preventative chiller maintenance.

News Article No.9

Control Panels

The first thing our engineers check at the start of the maintenance is the control panel of the chiller. In here he checks:

Programmable Logic Controller

Alarm History

The alarm history is analysed in sequential order to build up a picture of the last maintenance period.

Settings and Timers

The various levels of password accessed menus are checked and adjusted for efficiency and to eliminate any spurious trips on the running of the chiller.

Compressor Run Hours

We make a note of the compressor run hours on our detailed Tick Sheet. Bearings on centrifugal compressors and valve gear on reciprocating compressors are changed at pre prescribed intervals as defined by the manufacturer. This is to prevent an expensive failure and the resulting remanufacturing of the compressor.

Preventative Chiller Maintenance of Electrical Safety Devices

Fuses

Each one of these is popped from its holder and the continuity checked with a multimeter. This is maintenance the right way round, instead of run testing and following the fault back to the fuse.

Circuit Breakers

Each of the breakers is tested to ensure it will function correctly when it needs to.

Residual Current Device

RCDs work by detecting current leakage to earth. It monitors the difference between the live and neutral poles. As above these are tested on each visit.

Preventative Chiller Maintenance of Refrigerant Safety Switches

High Pressure Switches

The settings and dead band (the difference in pressure between cut out and cut in) are checked and adjusted on each visit. Sometimes due to malfunctioning controls or condenser condition, fans can be manually left off or can be forced on. Not the best running condition, but we will keep you up and running until we send out the new parts. Where this is a bespoke manufactured condenser, we have the best lead time available.

Low Pressure Switches

As above, the low pressure switches are checked and adjusted as need be. The seasonal and varying load conditions affect the saturation point of the refrigerant in the evaporator. This can cause untimely trip outs when the plant is otherwise running in optimum efficiency.

0161 370 7193

service@maximuschillers.com

Contact Form

Coefficient of Performance during Preventative Chiller Maintenance

The coefficient of performance is the cooling effect compared with the electrical energy supplied to the chiller. It is represented in a ratio, for example 6:1. That is six times more cooling effect compared with the electricity supplied. The higher the cooling effect relative to electricity supplied, the lower the cost in electricity. The ratio is often divided by 1 to show as just a number- in this example 6. The cooling effect is measured in kj/kg and the electrical supply is represented in kw/h.

Latent Heat 

A chiller system would have a COP of less than 1 if not for latent heat. Exploiting this hidden heat when both evaporating and condensing the refrigerant is one of the founding principles of the basic refrigeration cycle. It takes a lot of heat added to the system to get the refrigerant to boil, then the same amount of heat is rejected from the condenser in the liquification of the refrigerant.

System Efficiency

A lot of basic things routinely drag down the efficiency of a chiller system. Just with the effect of our engineer attending site to carry out the maintenance- he will keep the COP optimised. Here are some of the system checks and procedures he carries out:

Superheat

When a compressor never goes off due to refrigerant shortage, there is a dramatic increase in electricity consumption. Also, the system will not have very much cooling effect. Continuing like this will cost more money and achieve little.

Subcooling

Basic condenser maintenance will improve the subcooling values. These readings will be taken at various load and ambient conditions at different times of the year. This is so we can build up an understanding of the plant. We carry a wide range of chemicals for the maintenance of your condenser. These chemicals are carefully selected so that they do not damage the condenser causing leaks. Condenser fans also cause a poor COP:

0161 370 7193

service@maximuschillers.com

Contact Form

Preventative Chiller Maintenance and Condenser Fans 

Basic Design

With some basic chiller designs, the chiller condenser fans come on and off forwards and backwards at different pressures. This means that when other fans have failed, or are stuck going backwards- the one on the end comes on with the higher pressure then blows to earth. This is due to the ingress of water in the year it did not run.

Refrigerant Leaks

The above design means that there are fluctuating pressures in the condenser. This causes continuous expanding and contracting of the copper tubes. These copper tubes rub against the steel frame which is holding them in place- causing reoccurring leaks. Another reason for repeated leaks on the condenser is the vibration issue of the fans banging on and off. Add into this equation a cheap, flimsy frame that develops its own resonance- you then have an un ending problem.

Preventative Chiller Maintenance with Fan Speed Controllers 

Part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere is that we can source any fan speed controller from our fast supply chain. This remedies the problem, as fan speed controllers bring all the fans on together at different speeds. Therefore, extending the lifespan of the fan and maintaining an efficient coefficient of performance.

Axial Fans

Most air cooled chillers use axial fans. They suck the air through the condenser and reject it upwards and away from the chiller. Ducts are often fitted to help this process. Scaffolding is erected to provide safe access to engineers.

Radial Fans

Radial fans are also called centrifugal fans or blowers. They are very popular in server rooms where air is blown down into a mezzanine floor and up through the racks. They are also used outside in chillers where they blow out and away from the chiller. They are usually driven by belts which require regular inspection and maintenance.

0161 370 7193

service@maximuschillers.com

Contact Form

Preventative Chiller Maintenance and R134a Refrigerant

In the photo, the controller shows R134a refrigerant and the 8.3°C of superheat as calculated by the program. This superheat may look at first to be okay, but when considering the compressor loading and expansion valve- it points towards a system issue. Our engineers diagnose if the issue is related to a component or a refrigerant shortage.

Characteristics

HFC refrigerant which has a chemical name of Tetrafluoroethane or CF3CH2F. It has low toxicity which is good for the health and safety or our engineers. It is not combustible, but other chemicals are made as a result of a fire. It is non corrosive too, which extends the lifespan of the pipework and components around the system.

Centrifugal Drop In

This refrigerant is widely used as a replacement for HCFCs, such as, R22 used in centrifugal chillers. It is only one fluid, where as the other popular HFC refrigerants are blends. These blends fractionalize in a flooded condenser or evaporator. That is to say: one or two of the refrigerants in the blend separate out and do not continue their cycle around the system. The chiller now has the wrong refrigerant circulating around the system for the application temperature. Extreme running faults follow, such as, ice on the compressor, suction pipe and expansion pipe. This is as a result of the refrigerant pressures and temperatures being outside of nominal conditions.

Global Warming Potential

A global warming potential of 1430 is considered to be high. Therefore, the refrigerant is being phased down to 21% by 2030 in line with F-gas guidelines. These guidelines are in accordance with the European Union and the Kyoto Protocol. Because of the regulations for the handling of fluorinated gas, our engineers attend college to learn how to decant the refrigerant safely. We then ship it to the recycling centre for disposal. A waste carrier note being completed each time to track the refrigerant from dispatch to disposal. Finally, F-gas leak tests are carried out and recorded on each visit. Maximus Chillers completes the picture.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Glycol Chiller Maintenance

Chilling Plant Maintenance

To read more about chiller control panels hit the Tag at the top of the page.

To watch a video about chiller efficiency and the coefficient of performance | Click Here


Blue recovery unit with a grey recovery cylinder during a chiller breakdown

Chiller Breakdown

A rainy day for a chiller breakdown for our engineer in the North West.

News Article No.8

Electrical Faults during Chiller Breakdown

Our customer called us out because he was having electrical faults with the chiller. The power supply to part of the panel had gone down and he required our assistance. Our engineer found a blown fuse which he replaced and tested operation- it blew again. Using his multimeter, he followed the diagnosis though to an earth fault on the flow switch…

Water System Flow Switches

The flow switch vapour seal had failed allowing rain water to ingress. This caused an earth failure on the 240v control circuit, and so blowing the fuse. The customer raised an order forthwith and so our engineer replaced the flow switch with the stock from his car. Each of our engineers keeps a range of flow switches for a variety of applications…

Stainless Steel

Where water system chemicals are corrosive, we carry corrosion resistant flow switches. This type has a longer working life due to the use of stainless steel. They are more expensive due to the higher manufacturing costs, but they are worth the money as they are less likely to fail, causing a potential loss of production.

Outside Use

This was the type fitted by our engineer on site in this news article. It has been developed and tested across a range of adverse weather conditions including freezing conditions and heavy rain. The electrical and switching compartment is protected by a sealing gland to keep the weather out. A rubber ‘o’ ring provides the seal into this compartment.

Inside Use

Some applications have the flow switch located inside the building in the plant room with the control cable extending out to the chiller controls. Another configuration allows for the flow switch to trip out the building controls and so dropping out the run signal to the chiller. In either case there is no need for weather proofing. This kind of flow switch is cheaper due to the lower construction costs.

High Pressure

Some water systems operate at considerable pressure. Therefore, high pressure flow switches have been developed for this application. They are capable of preventing water ingressing from the water system and into the electrical and switching compartment.

Test and Adjustment

Our engineer carried out testing and adjustments to the flow switch to ensure that it ran reliably. He achieved this by monitoring the water system readings and measurements against the design specifications of the switch. When he got it to settle down, he replaced the fuse and ran tested the chiller...

0161 370 7193

service@maximuschillers.com

Contact Form

Condenser Fans

The condenser fans were not coming on at all at first and later only slowly. They are controlled by a fan speed controller which is sensitive to pressure. A minimum value of volts is supplied to the fans, so as to prevent stalling and over heating of the internal motor windings. The fans were found to be in good working order, so he decided to turn his attention to…

Pressure Temperature Relationship of Refrigerant

There was found to be a lower pressure and so a lower temperature in the condenser. After careful fault finding and diagnosis involving putting the pressures and temperatures into a calculator, our engineer decided that the chiller was running short of refrigerant. This is consistent with Charles’s Law of Constant Volume. It is one of the fundamental scientific principals of how a chiller works: the higher the pressure- the higher the temperature/ the lower the pressure- the lower the temperature.

Recovery Units for Refrigerant

After receiving a further order from our customer, we gave the go ahead to our engineer to use his recovery unit to decant the gas. The refrigerant is sucked into the unit using a small one cylinder reciprocating compressor. The compressor discharges into the on board condenser which is cooled by a fan. The subcooled refrigerant travels down a refrigerant hose which is connected to the recovery cylinder in the picture. After this process was complete, he started looking for a leak...

Leak Testing and Pressure Testing

The leak was identified on the flange for the expansion valve. This component was removed, cleaned with our in house refrigerant grade solvent, then the joint re made with a compound suitable for the temperature range of the component. After a satisfactory nitrogen pressure test, the evacuation process can begin…

0161 370 7193

service@maximuschillers.com

Contact Form

Refrigerant System Vac Pumps

Each of our engineers carry a high capacity vacuum pump of the highest quality. We believe in investing in state of the art equipment as this is part of how we provide the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere. Good equipment makes the job go easy.

Vane Pump

The pump works by sucking vapour into the inlet port. A rotary vane system extracts the vapour and discharges it through the top of the pump module. Oil is used to lubricate the vanes that slide around the pump cylinder. The vanes are kept a tight fit against the cylinder with the use of springs. As our pumps are high capacity, an oil filter is fitted to the outlet with a gauze inside to catch any oil droplets.

Electric Motor

This motor fits onto the back of the vane pump module. It comes from the factory set to 240v, but we change the pins for the electrical connections to convert it for use with 110v. This is because customers and engineers demand the use of 110v as if is safer for use in the UK climate. The 110v plugs and extension cable are shrouded and weather resistant. Weather resistant does not mean weatherproof, so we take measures to limit the exposure to adverse weather conditions. The pump motor, however, is not weather resistant at all, so care is taken to locate it somewhere dry. After a long time running, the motor runs hot, so our engineers take readings and carry out adjustments to ensure that it stays within its nominal operating temperature range.

Oil Changes during Chiller Breakdown

The vac pump oil is changed before each use with our specialist grade, high quality oil. Contact our office for prices and delivery times. The manufacturer of the pump recommends these oil changes as moisture and impurities absorb into the oil and so reduce its performance, also the working like of the pump.

0161 370 7193

service@maximuschillers.com

Contact Form

Refrigerant System Evacuation

Having set up the vacuum pump, our engineer started the evacuation process.

Torr Gauges used During Chiller Breakdown

We use analogue Torr gauges as they are more reliable than digital ones. Also, they do not need batteries and it does not matter if they get wet. Our engineer attached the Torr gauge to a suitable part of the system with a refrigerant hose, ensuring that a good seal was made between the components with a sealing compound.

Fittings used during Chiller Breakdown

Fittings were used to get between the different thread types from the vac pump to the fridge system. Having warmed up the pump for half an hour he was ready to start the process.

Non Condensables Removed during Chiller Breakdown

One purpose of evacuation is to remove the gasses that will not condense such as nitrogen remaining in the system from pressure testing. Another non condensable is air that has entered the system from when the expansion valve was removed. These non condensables affect how a fridge system works according to Dalton’s Law of Partial Pressures: that all gasses in a vessel act as if they are on their own. The non condensables cause a higher head pressure in the condenser. When this pressure is added into our calculation- it throws out the sum and so gives a false reading of subcooling.

Dehydration during Chiller Breakdown

The other purpose of evacuation is to dehydrate the system. Water, as we know, has a boiling point of 100°C at sea level, which is 1bar absolute or 760 Torr. As you start to drop the pressure, so correspondingly, the boiling point also drops. For example, water boils at the top of Mount Everest at around 68°C. If we continue vacuuming a refrigerant system, eventually we can remove all moisture by dropping the pressure below the saturation point of water. This works even in the winter in UK ambient conditions. Moisture in the system causes system failures and malfunctions leading to expensive breakdowns.

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Service Company

Industrial Chiller Service

Chiller Service Company Visit

Chiller Fault Finding & Diagnosis

F-gas Chiller Leak Testing

Chiller Commissioning

Air Cooled Chiller Condenser Testing

To read more about chiller condenser fans hit the Tag at the top of the page.

Read more about rotary vane pumps at Wikipedia | Click Here


PLC and relay board in a panel during chiller service company visit

Chiller Service Company

Electrical Testing

A chiller service company can carry out electrical testing and diagnosis even when a wiring diagram is not available- our engineers can trace the wiring around a chiller.

News Article No.3

Doing this often aids with the diagnosis even when there is a wiring diagram, as having your eyes on a component often makes more sense than a symbol. In any case, our engineers carry out system testing with Fluke multimetes and ammeters.

F-gas Leak Testing by Chiller Service Company

We also carry a range of thermocouples and probes to be used in conjunction with our calibrated digital thermometers. We use these along with comparators to carry out leak testing. After fitting the probes, we first have a visual look around for a sign of a gas leak. All parts of the pipework and system components are inspected. Then, we carry out a full refrigerant diagnosis to determine that the refrigerant system is operating with a full charge. Reports for each chiller are completed and filed in the onsite F-gas leak register. A history can be built up to assess the serviceability of the plant and the frequency of any leaks.

Chiller Service Company Monitoring

Where intermittent faults are concerned, on site monitoring is required. If the job is not progressed on each visit, there is little point in a call out. We carry out tests during monitoring and ensure that the wiring is tight. Hopefully, waiting for the fault to occur whilst next to the machine. Alongside this, we rely on feedback from the end user, as regards, the symptoms and the circumstances of the chiller when the fault occurred. From this we extrapolate the diagnosis and decide the next step to take. This may be to attempt to move the fault to another machine or, at least eliminate one thing each visit.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Service Company Evaporators

Shell and Tube

These have a rolled steel shell, welded down the seam with and end plate on either end. The water system pipes can be bolted to the sides or the end. The endplate can be removed for access to the waterside of the tubes. A strainer is fitted to the inlet to catch any foreign objects that may have been carried around the water system. Inlet and outlet gauges are fitted for the monitoring of the water system readings during a visit. 

Flooded

On larger chillers, the screw or centrifugal compressor is mounted directly on top of the flooded evaporator. The refrigerant is in its liquid phase on the outside of the tubes. These are arranged in a rack extending through the length of the shell. The warmer process water running through the tubes causes the refrigerant to boil off. A sight glass is usually available to check the state of the refrigerant evaporating on the copper tubes. The suction from the top of the evaporator goes round a baffle so as to prevent the slug back of liquid refrigerant into the compressor. The refrigerant flow into the evaporator is controlled by the expansion valve…

Expansion Valves

This takes the form of a fixed size orifice on the liquid line in between the shell and tube condenser and the flooded evaporator. The size of the orifice previously being calculated to match the mass flow rate of the refrigerant dictated by the compressor. Some newer systems have a variable orifice for the more efficient running of the plant. This is controlled electronically along with the loading of the compressor, relative to the available load.

Multiple System N+1

Smaller DX evaporators are usually multi system. This gives an N+1 redundancy of the plant. Indeed, when one side of a 2 system evaporator is having service work carried out, the other side continues to operate normally. Thinking ahead and allowing for additional capacity is essential when the application is critical, such as, a data centre or a hospital. When a redundant system comes online due to a failure- getting the failed system back up and running is a matter of urgency. For this we offer same day delivery of parts and a fully stocked mobile workshop.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Service Company Condensers

Various configurations are employed to ensure good air flow through the condenser fins. The most popular being a ‘v’ condenser as the surface area is increased with this design. Powerful fans are used to reject the air and heat upwards and away from the chiller. Where system location causes the recirculation of air, duct work can be fitted to direct the air away from the chiller. The pressure is monitored using a HP gauge.

Pressure Transducers

Johnson Controls

A popular kind of pressure transducer that is used on condensers is Johnson Controls. These can be bolted onto the refrigerant discharge pipe to sense the system pressure. They have a 5vdc input that comes into the transducer on a red wire, a black wire is the ground and a white wire is the signal back to the fan speed controller. The transducer has a minimum to maximum range, so a chart can be used to determine if the signal is reading back correctly. On chillers where the transducer is wired directly in the controller- calibration can be carried out to offset the readings.

Keller

Another kind of pressure transducer is the 4-20mA type. It sends a mA signal back to the controller or the fan speed controller. 4mA is the minimum position, so this relates to the minimum of the transducer pressure range.

R134a Refrigerant

R134a refrigerant operates at a lower pressure in a condenser than the other commonly used HFC refrigerants. If you were looking for a chilled water set point of 6°C in the UK ambient for example, the R134a refrigerant saturation on the high side of the system would be around 36°C Latent heat from the water system and heat added into the refrigerant from the compressor are rejected from the condenser. As the refrigerant passes down the condenser tubes, cool air blowing across the outside of the tubes, cools the refrigerant vapour down through the latent heat phase and into a subcooled liquid.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Service Company Compressors

Centrifugal Compressors

This kind of compressor has a lower volumetric efficiency compared with the positive displacement compressors below. This is because the refrigerant is compressed using centrifugal force off the tip of the impeller, instead of being mechanically compressed. The advantage of this kind of compressor is a high mass flow rate of refrigerant. These compressors are used in factories where a large amount of chilled water is required to cool the process. They are also used in countries where district cooling is used. The chillers are arranged in rows in a chiller hall and are piped into the district cooling loop.

Screw Compressors

Oil used to lubricate the bearings is also used to create a seal between the rotors. Computer aided design (CAD) software and computer numerical control (CNC) grinding machines are used in the construction of screw rotors. The shape of the rotors is designed to compress the refrigerant along the screw. The length of the screw that is available to compress the refrigerant can be adjusted with a slide valve. Any stage of loading between 0- 100% can be achieved. This is regulated with a slide valve potentiometer. Screw compressors are very reliable and have a long service life. They also have a low vibration reading which ensures a lower instance of refrigerant leaks around the compressor.

Scroll Compressors

A service free compressor. Service free assuming that the rest of the system is functioning correctly. This kind of compressor relies on oil migration around the system. The oil is entrained along the inside of the pipework, around the system and back to the compressor. An oil level sight glass is fitted into the body of the compressor at the required level. Refrigerant shortage can cause the oil to stay in the bottom of the evaporator, causing a low oil level condition in the compressor. We can be scheduled to attend site to drain the oil, then pump new oil into the compressor.

Compressor Failure

When any of the above compressors fail, you are in safe hands with Maximus Chillers. We have the capability to lift and shift the compressor to our remanufacturing facility for a full overhaul. The reason for the failure is diagnosed to ensure the new compressor does not fail for the same reason. Improving the reliability of your plant and extending its life is what we are all about- if we can reduce your service costs- that makes us happy! All temperatures and pressures are recorded to ensure the replacement compressor goes into seamless operation.

Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere- The MAXIMUS ADVANTAGE™

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Breakdown

Industrial Chiller Service

Chiller Service Company Visit

Chiller Fault Finding & Diagnosis

F-gas Chiller Leak Testing

Chiller Commissioning

Air Cooled Chiller Condenser Testing

To read more about chiller diagnosis hit the Tag at the top of the page.

Read more about pressure sensors on Wikipedia | Click Here


6 large air cooled chiller condensers maintained with 12 fans each

Air Cooled Chiller Condenser Maintenance

The photo is showing air cooled chiller condenser maintenance being carried out by Maximus Chillers. 6 water cooled chillers are located in the plant room below. They are 750 kw single screw compressors with a control panel located to the side of each. On this visit, the emphasis was to carry out a thorough maintenance of the condensers.

Fan Speed Controllers

The refrigerant for the systems is R134a, so to allow for the saturation of the refrigerant, 8 bar is the head pressure set point. This pressure corresponds to the desired condenser temperature of 36°C. Subcooling of 6°C to 8°C is achieved during the nominal operation of the plant. Each fan speed controller runs the 12 condenser fans together. Other condenser designs where fans bang on forwards and backwards cause vibrations resulting in reoccurring leaks on the condenser. Chiller No. 2 had tripped during a 'discharge override' system message. On inspection of No. 2 condenser- the fans speed inverter had tripped on 'over temperature' alarm. The panel fan, which is the kind to cool computers, was found to be still trying to run but seized. This failure had caused the alarm on the inverter. The panel fan was replaced from the stock of parts in the onsite stores. The chiller was reset and a detailed Tick Sheet was completed noting the occurrence of this fault on arrival.

Air Cooled Chiller Condenser Maintenance Cleaning

Because of the large size of the plant, the customer had installed a fireman’s hose for the cleaning of the condensers. This is located in the free space beneath the condensers. It is fitted to a portable buggy so it can be moved under each condenser. Setting the nozzle to the correct attitude, our engineer moved the buggy sideways, so as to rinse the condenser in the direction of the fins. The condenser was relatively clean as the onsite maintenance engineers carry out this task as part of their monthly schedule.

0161 370 7193

service@maximuschillers.com

Contact Form

Design Considerations for Air Cooled Chiller Condenser Maintenance

The kind of condenser in this article is:

Multiple Row Tubing

3 Rows

It has tubing of ½” diameter which is 3 rows deep. Each pass starts at the discharge header which is at the inlet to the condenser, goes down to the far end, through a condenser end turn, back to the discharge end, through another condenser end turn and back again to the liquid pipe end. The heat removed from the condenser, per kg of refrigerant, is the heat content of the vapour as it leaves the compressor, minus the heat remaining in the liquid at the end of the condenser.

6 Rows

Some condenser designs are up to 6 rows deep. This allows a small footprint of space where there is not much room for the location of the chiller. The downside to this, is that the chiller engineer can often struggle to locate the exact location of a leak when it is deep into the coil. If a condenser is too small, it will cause a higher head pressure and reduce the life of the compressor. We can arrange the lift out and repair of deep row condensers in our workshop.

Finned

This condenser has aluminium fins which are pressed around the copper tubing. This increases the surface area of the condenser heat exchange medium and so increases the dissipation of heat. The same amount of heat delivered to a condenser from the compressor must also be rapidly removed. For this condition to be reached, enough head pressure will need to be built up so that the condenser temperature is at least 15°C above the ambient. This is why the same chiller can be picked up and shipped to the Middle East and still work. It will just run at a higher discharge pressure/ temperature. There will, however, be a loss in the coefficient of performance as the higher pressures will result in more electricity in, versus the same amount of refrigeration effect out.

Forced Convection Type

The fans mounted on the ducting provide this forced convection. The air is sucked through the bottom of the condenser, across the 3 rows of tubes, along the fins and up through the fans. The air flow is stable as it enters the fins so good heat transfer is achieved. As it leaves the fins at the top, there is lower heat transfer as the air is turbulent.

0161 370 7193

service@maximuschillers.com

Contact Form

Fan Replacement during Air Cooled Chiller Condenser Maintenance

Spare fans are available onsite for replacement when individual fans fail. As mentioned above, these condensers are controlled with FSC's which reduce the occurrence of leaks. As well as this, fan speed controllers increase the lifespan of the fans. Because all of the fans run together, they speed up and slow down steadily. When high pressure control switches are used, they are set at different pressures. This means that some of the fans never come on until the head pressure is too high. This is usually due to a blocked condenser, failed fans or a high ambient. Because the fans have not come on for a long time, they are often seized or have suffered water ingress from the rain. An onsite maintenance engineer is available to help with the lift out and lift in of the replacement fans.

Pressure Relief Valves

Each of these condensers is fitted with a pressure relief valve (PRV) It is fitted into the discharge pipe on the inlet to the condenser. This is so that if the fans and the HP switch were to fail, the dangerous levels of pressure in the system would be vented. It is unlikely, however, that the HP switch would fail as this is a very reliable part. A PRV being fitted is often the requirement of insurance companies. The testing or replacement being arranged at scheduled intervals.

To read more about air cooled chiller condensers click the Tag at the top of the page.

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Screw Chiller Compressor Maintenance

Shell & Tube Evaporator Maintenance

Scroll Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

Read more about HVAC air coils on Wikipedia | Click Here


Engineer carrying out process chiller service with yellow and black cylinder

Process Chiller Service

Maximus Chillers has just carried out process chiller service to a flooded evaporator. The refrigerant seal on a four bolt, flanged coupling had been found to be leaking liquid refrigerant. There was no possibility to valve off that section of the machine, as the flooded evaporator is the storage vessel for all of the charge of the system in its liquid phase.

Refrigerant Recovery during Process Chiller Service

Our high capacity refrigerant recovery unit was set up next to the machine to carry out the task. 55 kg of refrigerant was recovered in a short time into our recovery cylinder. This refrigerant was collected for recycling after the job was completed.

Stainless Steel

Our unit is made from stainless steel because this metal works well with ammonia.

Condenser for Process Chiller Service

The condenser is made from tubing which is connected to ‘u’ bends on either end. These ‘u’ bends send the condensing refrigerant back along the next tube in the opposite direction. This process, back and forth allows time for the refrigerant to condense into a liquid. Fins are pressed around the tubing to increase the surface area and help to dissipate more heat from the refrigerant. A condenser fan is fitted to suck the air through the fins and so reject the heat.

Reciprocating Compressor

A four cylinder reciprocating compressor is fitted to the unit to provide the pressure difference to pump the refrigerant into the above mentioned condenser. It has an air cooled electric motor fitted which is open drive. This is because ammonia would corrode the windings of the motor if a semi hermetic compressor were to be used. Semi hermetic meaning that the windings, stator and rotor of the motor would be internal to the system. The motor is fitted in the vertical position with the four cylinders opposing each other on the central crank shaft.

Controls for Process Chiller Service

For safety reasons controls are fitted to the unit. These include:

HP Switch

If the recovery cylinder were to become over filled, the pressure would build up to a dangerous level. The TARE and the ullage need to be calculated prior to the job to prevent this from happening. The below mentioned liquid pipes have been designed with pressure issues in mind, but somewhere on the system would be the weakest point. This would burst causing a catastrophic refrigerant leak. The whole charge of the machine and all the refrigerant in the recovery cylinder would leak to atmosphere. The HP switch is set by the engineer on site to the correct level given the ambient conditions. This takes into account the temperature of the refrigerant and the safe operating pressure of the vessel.

0161 370 7193

service@maximuschillers.com

Contact Form

Refrigerant Liquid Pipe

Steel Braided

The refrigerant in its liquid phase is pumped into the above mentioned unit down a steel braided liquid pipe. The steel braiding is to provide additional protection from the pipe being damaged on the outside. Damage like being driven over by a forklift truck, or having sharp objects coming into contact with it. Also, the braiding helps to prevent bursts when pressure builds up on the inside. This can be due to a restriction, malfunction of system components or vessel overfilling.

PTFE

The inner part of the pipe is PTFE. Other types of plastics and compounds corrode due to the toxicity of ammonia. Polytetrafluoroethylene is the chemical name for this compound, it is a fluorocarbon solid and is considered to be non reactive.

Fittings

There are various metric and imperial thread types that can be used. This depends on the fitting size on the machine and the fitting size and type going onto the recovery unit. We carry a wide range of fitting types to step down and step up in size. We can go between male to female types and use male to male and female to female where necessary. We carry adaptors to go from metric to imperial thread types.

Remote Access during Process Chiller Service

We carry an extensive stock of liquid pipes that can be connected end to end to provide remote access. We will always try to get the recovery equipment as near as possible to the plant, but when this cannot be achieved, we can arrange access up cat ladders or the side of a building. We can use our lift and shift team to arrange the hauling of all the required equipment and ancillaries to any location. Just part of what we call the MAXIMUS ADVANTAGEAny Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere. Contact our office for prices for the above mentioned pipes.

Process Chiller Leak Service

The flanged coupling was unbolted and the failed refrigerant seal was removed. The new seal was fitted from our full range of sizes that we keep on the shelf in our stores. Our engineer bolted the flanged coupling back up to the correct torque setting.

Pressure Leak Test

A nitrogen pressure leak test was carried out to ensure the integrity of the system with the result being a pass.

Dehydration Process

As the system was open to atmosphere, air had got into the system which carries moisture content. The moisture and non condensables were removed down to a near perfect vacuum using one of our high capacity vacuum pumps.

0161 370 7193

service@maximuschillers.com

Contact Form

Charging of Refrigerant

The photo shows the charging of a cylinder of refrigerant into the system in its liquid phase. The cylinder has a dip tube fitted for ease of handling. Once the pressure in the system and the cylinder equalized, remaining refrigerant was drawn into the system during the operation of the plant.

Run Testing

The sight glasses and level glasses were found to be at the optimum level under the normal running conditions of the plant. As it is a flooded system, there was found to be a low superheat value. A high subcooling value was achieved with the use of a subcooler. Our engineer monitored a full cycle of an hour and a half: compressor temperatures and oil level were found to be within normal operating limits.

Remote Service Monitoring of Process Chiller

The process chiller can be remotely monitored via a data uplink through the internet. Our office continued to monitor the plant for some days as it went into seamless operation.

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Fan Deck Service

Packaged Chiller Service

Chiller Service Company

Chiller Breakdown

Industrial Chiller Service

Chiller Service Company Visit

Chiller Fault Finding & Diagnosis

F-gas Chiller Leak Testing

Chiller Commissioning

Follow this link to purchase BESA pressure testing technical bulletin | Click Here


An R407c chiller condenser retrofit lifting operation outside in the compound

R407c Chiller Condenser Retrofitting

We recently undertook the job to carry out bespoke R407c chiller condenser retrofitting in the North West.

Rusted and Corroded Condenser

The old condenser looked alright on the surface- the fins were in good condition. The condenser was 18 years old, however, so when an attempt to repair a leak was carried out- the condenser leaked further along. This is because of the warming of rusted and corroded copper with an oxy-acetylene torch.

R407c Chiller 'V' Condenser Retrofitting

We arrived on site to measure up for the job. The ‘V’ condenser was built to order. We manufactured an exact replica to the same specifications and sizes of the old one. The operating pressures and high pressure cut out limit were taken into account in the design and the use of materials.

0161 370 7193

service@maximuschillers.com

Contact Form

Lift Out of the R407c Chiller Condenser being Retrofitted

On the day of the lift and shift we isolated the panel and checked it was dead, then we removed the panel and laid it on its front. This was to access the rivets behind the panel. These rivets, the ones on the other end of the chiller and around the lid were removed using a tool. The fans were disconnected and removed to make the lid lighter to lift off. Then, we attached slings to the chiller condenser and lifted both halves of the 'V' out.

Lift In

This part we did not want to get wrong as the condenser was brand new and did not have a mark on it. A reverse of the removal- it fitted perfectly just the same as the old one. With the lid lifted back on and the fans in- time for brazing then the pressure test.

Pressure Test, Dehydration and Recharge

The pressure test was satisfactory so our engineer put the system on vac for dehydration purposes and the removal of non condensables. After a deep vacuum was achieved the system was recharged and run tested. No issues were found.

Related Articles:
Chiller Refurbishment Supplier

Chiller Refurbishment Company

Read more about air cooled condensers at the Institute of Refrigeration | Click Here


Chiller service of fan decks showing 8 fans

Chiller Fan Deck Service

Bodger Watch

Chiller fan deck service is usually very good, but this is bodger watch! A new customer of ours was telling us about this little guy that used to come. He was reported to have been running around like the apprentice- ringing everybody up! Then when help came, it came in the form of this huge, big man who proceeded to get stuck in the chiller! You couldn't make it up! This is bodger watch! The customer asked for a professional service from Maximus Chillers.

Repeated Leaks on Condenser

Our engineer found the head pressure control was bringing the fans thumping on and off forwards and backwards. During a visit, the fans were found to be rattling the frame and juddering the chiller into leaks.

0161 370 7193

service@maximuschillers.com

Contact Form

Learning How to Think

Instead of just swapping like for like parts. Our engineers have the capability to think outside the box and make changes to chiller design. All of our engineers attend the Maximus School of Chillers at Head Office in Droylsden, Manchester. Read More on the Chiller Company page.

Fan Speed Controller during Chiller Fan Deck Service

On a return visit, we fitted off the shelf fan speed controllers from our stores- one for each system. These fan speed controllers are stand alone- they do not need to be integrated into the existing controls. When the pressure builds up- the fan speed controller speeds the fans up from the minimum (cut in) to the maximum (same volts as the incoming supply)

Chiller Fan Deck Service for Seamless Operation

Now the fan speed controllers are fitted- there are no more leaks. Any chiller can be made to settle down into seamless operation.

Are you a factory manager or facilities manager with recurring leaks on your chillers? Need your fans replacing or the controls adjusting? Look no further than Maximus Chillers.

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Service Company

Chiller Breakdown

Industrial Chiller Service

Chiller Service Company Visit

Chiller Fault Finding & Diagnosis

Visit the Institute of Refrigeration to read a paper on the comparison between air cooled condensers and evaporative condensers.


Translate