Chiller Condensers

Boxed, shell and tube chiller condenser being lifted into a building with a crane

Chiller Condensers

Shell & Tube

The chiller condenser on a 2 MW centrif we look after had deteriorated over a long period of time. We had carried out tube cleaning and noticed that it had been extensively repaired in the past. There were a lot of damaged tubes that had been blanked off. This had reduced the useful surface area for heat exchange to occur. The chiller was experiencing a ‘discharge limiting’ condition which was causing it to back off to 54% capacity.

Air Cooled

Because of the difficulty to remove and replace the condenser from the plant room, the customer had explored the possibility of air cooled condensers. His idea was to fit the discharge and liquid piping up the side of the building and into the plant room. After considering this possibility, we decided to advise him against using air cooled condensers because it would take two, 16 fan ‘V’ types. This would have a footprint too big for the available space. We decided to use a crane to lift out the old condenser, then lift in the new one.

Pump Out

The old condenser was valved off from the rest of the system and the refrigerant was pumped into an 800 kg recovery vessel. This was one of 2 vessels in the plant room that had been there since the chiller was new.

0161 370 7193

service@maximuschillers.com

Contact Form

Lift Out for Chiller Condensers

The pipework was unbolted and the ancillaries removed. When it came to unbolting the condenser, some of the bolts were seized due to a long period of rusting. Some of them came loose by heating them with oxy-acetylene, the others were ground off with an angle grinder. We used a specialist lifting company to shift the condenser from the plant room and out to the lifting bay. They then attached slings to one end, manoeuvred that end of the condenser to the outside of the building, then attached slings to the other end. Rather them than me! Quite a dangerous operation, but it had been assessed when composing their Risk Assessment Method Statement. The condenser was lifted onto the back of an articulated truck and taken to a scrap yard for recycling. There was quite a lot of copper inside- so our customer got quite a good weigh in!

Lift In for Chiller Condensers

The new condenser, in the photo, was kept in its packaging during the lift up, so as to protect it from damage. Once it was in the building and near to the plant room, it was removed from the box and shifted the rest of the way with dollies. There was some difficulty getting it into its final location. This was because the old steelwork had to be cut back with a blow torch to make the new condenser fit. Also, with limited room and no gantry crane, the lifting company had their work cut out to manoeuvre it. Eventually, it was in location and we decided to call it a day.

Adapting the Pipework

This particular condenser was selected because it was similar in dimensions to the old one. The positioning of the refrigerant and water system pipework was similar too. That said, it was not an exact match. We called an industrial plumbing and welding company in to make the changes we needed. They measured up and built adaptors to bolt in between the condenser and the water system pipework. They cut back the new condenser discharge connection and welded a new flange on. This was so it could be bolted onto the existing discharge elbow from the chiller. The liquid pipe connection on the new condenser was in the same location, but came with a different thread. Therefore, this too was cut back and an adaptor fitting was welded into place.

0161 370 7193

service@maximuschillers.com

Contact Form

Ancillaries

The fittings on the new condenser were BSP and the fittings on the chiller were Flare. We carry an extensive range of fittings that go between BSP and Flare. We can go from male to female, female to male, male to male and female to female. We can step up and step down in size too. Using these fittings, we attached the high pressure switch and high pressure transducer. The wires for the liquid and discharge temperature sensors were extended. This was so they could reach the location of the pockets that were built into the new condenser. Then, we used a special heat transfer paste to get a good transmission of heat in between the sensors and the pockets.

F-gas Pressure Test

We then carried out a strength test and a pressure test in accordance with F-gas guidelines. This was witnessed at the beginning and at the end by the customer. A satisfactory outcome was achieved, so on to the next phase of the job…

Dehydration of Chiller Condensers

We needed to dehydrate the system and remove the nitrogen that was used in the pressure test. This is because nitrogen is a non condensable which will affect system performance. Our powerful vacuum pump was set up, then we left it running overnight. A 1.5 Torr vacuum was achieved, which was the same pressure as when the Torr gauge was fitted directly on to the vacuum pump.

Open the Valves and Test

After removing the vacuum pump, the recovered refrigerant was pumped back in, then the discharge and liquid valves were opened back up. Then, our engineer had a good look round for leaks. I know it had just been pressure tested, but we think it’s always a good idea to check again. This done, the water system pumps were started and the water temperature showed at 23°C on the controller. The set point for the chilled water was 6°C so this warm water was helpful as it gave us plenty of load to carry out the testing. The chiller went through a timer and then started up. It loaded steadily up to 100% with no dramatics- splendid!

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Chiller Controls

Scroll Chiller Compressor Maintenance

Centrifugal Chiller Compressor Maintenance

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

To read more about chiller condenser systems hit the Tag at the top of the page.

Read more about chiller condensers on The Engineering Mindset | Click Here


6 large air cooled chiller condensers maintained with 12 fans each

Air Cooled Chiller Condenser Maintenance

The photo is showing air cooled chiller condenser maintenance being carried out by Maximus Chillers. 6 water cooled chillers are located in the plant room below. They are 750 kw single screw compressors with a control panel located to the side of each. On this visit, the emphasis was to carry out a thorough maintenance of the condensers.

Fan Speed Controllers

The refrigerant for the systems is R134a, so to allow for the saturation of the refrigerant, 8 bar is the head pressure set point. This pressure corresponds to the desired condenser temperature of 36°C. Subcooling of 6°C to 8°C is achieved during the nominal operation of the plant. Each fan speed controller runs the 12 condenser fans together. Other condenser designs where fans bang on forwards and backwards cause vibrations resulting in reoccurring leaks on the condenser. Chiller No. 2 had tripped during a 'discharge override' system message. On inspection of No. 2 condenser- the fans speed inverter had tripped on 'over temperature' alarm. The panel fan, which is the kind to cool computers, was found to be still trying to run but seized. This failure had caused the alarm on the inverter. The panel fan was replaced from the stock of parts in the onsite stores. The chiller was reset and a detailed Tick Sheet was completed noting the occurrence of this fault on arrival.

Air Cooled Chiller Condenser Maintenance Cleaning

Because of the large size of the plant, the customer had installed a fireman’s hose for the cleaning of the condensers. This is located in the free space beneath the condensers. It is fitted to a portable buggy so it can be moved under each condenser. Setting the nozzle to the correct attitude, our engineer moved the buggy sideways, so as to rinse the condenser in the direction of the fins. The condenser was relatively clean as the onsite maintenance engineers carry out this task as part of their monthly schedule.

0161 370 7193

service@maximuschillers.com

Contact Form

Design Considerations for Air Cooled Chiller Condenser Maintenance

The kind of condenser in this article is:

Multiple Row Tubing

3 Rows

It has tubing of ½” diameter which is 3 rows deep. Each pass starts at the discharge header which is at the inlet to the condenser, goes down to the far end, through a condenser end turn, back to the discharge end, through another condenser end turn and back again to the liquid pipe end. The heat removed from the condenser, per kg of refrigerant, is the heat content of the vapour as it leaves the compressor, minus the heat remaining in the liquid at the end of the condenser.

6 Rows

Some condenser designs are up to 6 rows deep. This allows a small footprint of space where there is not much room for the location of the chiller. The downside to this, is that the chiller engineer can often struggle to locate the exact location of a leak when it is deep into the coil. If a condenser is too small, it will cause a higher head pressure and reduce the life of the compressor. We can arrange the lift out and repair of deep row condensers in our workshop.

Finned

This condenser has aluminium fins which are pressed around the copper tubing. This increases the surface area of the condenser heat exchange medium and so increases the dissipation of heat. The same amount of heat delivered to a condenser from the compressor must also be rapidly removed. For this condition to be reached, enough head pressure will need to be built up so that the condenser temperature is at least 15°C above the ambient. This is why the same chiller can be picked up and shipped to the Middle East and still work. It will just run at a higher discharge pressure/ temperature. There will, however, be a loss in the coefficient of performance as the higher pressures will result in more electricity in, versus the same amount of refrigeration effect out.

Forced Convection Type

The fans mounted on the ducting provide this forced convection. The air is sucked through the bottom of the condenser, across the 3 rows of tubes, along the fins and up through the fans. The air flow is stable as it enters the fins so good heat transfer is achieved. As it leaves the fins at the top, there is lower heat transfer as the air is turbulent.

0161 370 7193

service@maximuschillers.com

Contact Form

Fan Replacement during Air Cooled Chiller Condenser Maintenance

Spare fans are available onsite for replacement when individual fans fail. As mentioned above, these condensers are controlled with FSC's which reduce the occurrence of leaks. As well as this, fan speed controllers increase the lifespan of the fans. Because all of the fans run together, they speed up and slow down steadily. When high pressure control switches are used, they are set at different pressures. This means that some of the fans never come on until the head pressure is too high. This is usually due to a blocked condenser, failed fans or a high ambient. Because the fans have not come on for a long time, they are often seized or have suffered water ingress from the rain. An onsite maintenance engineer is available to help with the lift out and lift in of the replacement fans.

Pressure Relief Valves

Each of these condensers is fitted with a pressure relief valve (PRV) It is fitted into the discharge pipe on the inlet to the condenser. This is so that if the fans and the HP switch were to fail, the dangerous levels of pressure in the system would be vented. It is unlikely, however, that the HP switch would fail as this is a very reliable part. A PRV being fitted is often the requirement of insurance companies. The testing or replacement being arranged at scheduled intervals.

To read more about air cooled chiller condensers click the Tag at the top of the page.

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Screw Chiller Compressor Maintenance

Shell & Tube Evaporator Maintenance

Scroll Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

Read more about HVAC air coils on Wikipedia | Click Here


An R407c chiller condenser retrofit lifting operation outside in the compound

R407c Chiller Condenser Retrofitting

We recently undertook the job to carry out bespoke R407c chiller condenser retrofitting in the North West.

Rusted and Corroded Condenser

The old condenser looked alright on the surface- the fins were in good condition. The condenser was 18 years old, however, so when an attempt to repair a leak was carried out- the condenser leaked further along. This is because of the warming of rusted and corroded copper with an oxy-acetylene torch.

R407c Chiller 'V' Condenser Retrofitting

We arrived on site to measure up for the job. The ‘V’ condenser was built to order. We manufactured an exact replica to the same specifications and sizes of the old one. The operating pressures and high pressure cut out limit were taken into account in the design and the use of materials.

0161 370 7193

service@maximuschillers.com

Contact Form

Lift Out of the R407c Chiller Condenser being Retrofitted

On the day of the lift and shift we isolated the panel and checked it was dead, then we removed the panel and laid it on its front. This was to access the rivets behind the panel. These rivets, the ones on the other end of the chiller and around the lid were removed using a tool. The fans were disconnected and removed to make the lid lighter to lift off. Then, we attached slings to the chiller condenser and lifted both halves of the 'V' out.

Lift In

This part we did not want to get wrong as the condenser was brand new and did not have a mark on it. A reverse of the removal- it fitted perfectly just the same as the old one. With the lid lifted back on and the fans in- time for brazing then the pressure test.

Pressure Test, Dehydration and Recharge

The pressure test was satisfactory so our engineer put the system on vac for dehydration purposes and the removal of non condensables. After a deep vacuum was achieved the system was recharged and run tested. No issues were found.

Related Articles:
Chiller Refurbishment Supplier

Chiller Refurbishment Company

Read more about air cooled condensers at the Institute of Refrigeration | Click Here


Chilled water system repair of condenser to a silver chiller with blue compressors

Chilled Water System Condenser Repair

Chilled Water System Condenser Beyond Repair

The repair of the condenser was required on this chilled water system because the previous company had been chasing leaks round in a circle. Therefore, the customer had decided to buy a new condenser. This was our first job with a new contract, so we wanted to make a good impression.

Condenser Removal

There was no refrigerant in the system, so our engineer cut the discharge and liquid line to the condenser. He then removed the rivets so the frame could be taken apart. Lifting equipment was fitted to the old condenser to aid the removal. Then, slings were fitted and a forklift truck removed the old condenser.

Condenser Replacement

Our engineer supervised the condenser replacement. He found that the new condenser did not fit correctly. The new condenser was 5mm thicker than the old one. It was decided to lift it back out and angle grind the frame to make more room. Once this was completed, the new condenser fitted correctly and was bolted in place.

0161 370 7193

service@maximuschillers.com

Contact Form

Pipework Repair

The pipework had to be repaired and brazed in. Then, the standard practice of a pressure test to ensure the integrity of the system.

The Evacuation Process during Chilled Water System Condenser Repair

Having passed the pressure test, our engineer set up the vac pump and started the evacuation process. This is to dehydrate the system by pulling a vacuum of less than 2 Torr. Any moisture in the system will boil away and leave the system dry.

Recharge and Test Operation

The refrigerant is R410a. Our engineer put around half the charge in, then trimmed the remaining charge according to the superheat and subcooling values. He monitored the system for the rest of the day- looking for leaks as the plant was at operating pressures of 30 Bar. All was well, so the customer signed off the paperwork as he was pleased with the capability of our engineer.

Related Articles:
Air Cooled Chiller Condenser Maintenance

R407c Chiller Condenser Retrofitting

Read about air cooled condenser installation at the Institute of Refrigeration | Click Here


Translate