Chiller Efficiency

Red chiller with lantern illuminating the internal components showing test equipment for checking chiller efficiency

Chiller Efficiency

In this article we will be looking at some of the basic reasons why chiller efficiency is reduced...

News Article No.18

A Blocked Condenser Decreases Chiller Efficiency

When an air cooled condenser becomes blocked, there is a reduction in air flow through it. This causes a high pressure condition to exist. The compressor pulls more amps to achieve the same mass flow rate of refrigerant. Also, more fans come on to try and reduce the excessive pressure. The on site maintenance team usually brush down the condensers at regular intervals. However, some of the contaminants require specialist cleaning equipment to be used by our engineers during the scheduled maintenance visits. We also carry a set of fin alignment tools to ensure that the air flow is kept at its optimum condition.

Evaporator Thermal Insulation Decreases Chiller Efficiency

Contaminants circulating in the water system accumulate on the surface of the tubes in the evaporator. This thermal insulation prevents the absorption of latent heat into the chiller refrigerant system. Because the water is not being chilled efficiently, the compressor stays on longer to try to achieve set point. When this condition is allowed to deteriorate, the compressor never goes off and the chilled water temperature rises to a point where little effect is being made to the cooling of buildings or the cooling of an industrial process. We strip down the heat exchanger and use specialist cleaning equipment to repair the problem.

Blocked Strainer

This problem is particularly prevalent on chillers supplying chilled water to a heavy industrial process. The strainer is essential to prevent the contaminants continuing to the evaporator and causing the above mentioned thermal insulation. This is usually one of the periodic checks of the on site engineers as part of their planned preventative maintenance schedule. Our engineers also check the strainer on each maintenance visit.

0161 370 7193

service@maximuschillers.com

Contact Form

Refrigerant Shortage Decreases Chiller Efficiency

In the photo, the superheat and subcooling values are being worked out by one of our engineers. This is how we determine a refrigerant shortage. Less latent heat is being absorbed into the chiller refrigerant and so a lot of electricity is being used with little effect to the chilling of the water.

Refrigerant Leak Repairs

The remaining refrigerant is decanted from the system using a pump out unit and recovery cylinders. We then pressure leak test the entire system using nitrogen. After locating the leaks, we repair them using oxy-acetylene. The system is then pressure tested according to industry guidelines to ensure its integrity. Then, the dehydration process is carried out by pulling the system down to a near vacuum. This also has the effect of removing non condensables from the system, such as, air and nitrogen. We then recharge the system with refrigerant, a little at a time, until the superheat and subcooling readings come to within standard industry guidelines. This saves a considerable amount of electricity used for the running of the plant.

F-gas Register

Our leak tests and follow up leak tests are recorded in your F-gas register so that when an external auditor arrives on site, you can show that you are maintaining your plant according to the current regulations.

Blocked Pump Fan

On smaller process chillers, the water system pump is located inside the chiller. Over time, the pump cooling fan inlet becomes blocked causing a reduced air flow across the external cooling fins on the pump. This causes the pump to run hotter and so pulling more amps. The bearing life of the pump is also reduced because of its inefficient operation. As well as the increased cost of electricity, expensive pump replacement is needed at more frequent intervals. Pump efficiency and functionality checks are just some of the procedures that we carry out during a maintenance visit.

0161 370 7193

service@maximuschillers.com

Contact Form

Waste of Money

When you look at these examples of inefficiently running chillers, it is easy to see that there is a significant waste of electricity and the untimely replacement of parts. The above are just a few examples of some of the more basic reasons for a poorly running chiller.

Maintenance Visits Improve Chiller Efficiency

We carry out an extensive list of other checks and procedures during each maintenance visit. We have developed a detailed Tick Sheet to ensure that our engineers do not forget any of the adjustments that can be made.

Mobile Workshop

We also carry an extensive selection of commonly used parts and materials in each company car. This means that we can often improve a chiller’s performance during a visit with no extra cost.

Kilowatt Hour Meters

Our maintenance saves money! With new customers who have poorly maintained chillers, we have the option of fitting kilowatt hour meters. We record the amount of electricity being used at the start of the contract. Then, we carry out our list of procedures and adjustments to improve the running of your chillers. This is a visual way for our customers to see just how much money they are saving. When this is compared to the cost of a maintenance contract, they can see how worthwhile it is having Maximus Chillers on site.

Scheduled Chiller Maintenance

Send us an asset list of your chillers and we will put together a maintenance schedule to keep your chillers running in the best condition. We will recommend how many visits are required each year and what needs to take place on each visit. A plan will be put together regarding the procedures that your onsite engineers can carry out in between visits.

Technical Support Desk

To keep your costs down, we offer a free Technical Support Desk to all of our contract customers. Manuals and passwords can be sent in PDF format direct to your computer. To further assist, we offer real time technical support using face time on your phone. This is because it is often a lot easier to show our technical engineer a chiller that is running poorly, rather than to explain it.

Related Articles:
Air Cooled Chiller Condenser Testing

Shell & Tube Chiller Evaporator Maintenance

F-gas Chiller Leak Testing

Planned Preventative Chiller Maintenance

Hit the Tags at the top of the page to navigate your way to our extensive library of further reading on this subject.

Read more about how to improve chiller efficiency on The Engineering Mindset | Click Here


Open chiller controls panel showing PLC, relays, contactors and wiring

Chiller Controls

Chiller controls can be remotely operated and monitored, but in this article, we will be looking at chillers operating in local.

Each chiller has a panel where the lead or the lag chiller can be switched from. They have N+1 redundancy built in, so one of two chillers will normally be in standby with the other one running. The chillers in the photo are equipped with kilowatt hour meters because the customer wants to monitor their efficiency. He has targets to meet and wants to gauge the effect that our maintenance has in reducing his energy costs.

Condenser Pressure

The condenser pressure control is external and stand alone from the panel.

Transducer

A transducer is fitted to the discharge pipe near to the compressor. This gives a 0 to 5vdc control signal to the fan speed controller which is bolted to the frame. There is a minimum and a maximum value on the transducer, so the FSC is programmed to work out the pressure from the voltage.

Fan Speed Controller

415v on three phases are the input to the FSC. It uses solid state thyristors to regulate the output to the fans. This is according to the demand received by the transducer. Solid state means that all the parts are electronic with no moving parts. Fan speed controllers are really good at extending the life of the fans. This is because all of the fans operate together- smoothly and reliably.

Chiller Controls Digital Inputs

There are three essential digital inputs to the controls of any chiller. All of them have a volt signal out to them, which returns back to the panel. If there is a fault- the volts drop out.

LP Switch

This protects the chiller from a low pressure condition. Compressor and evaporator failure would result, so this device is set below the running pressure of the system, but high enough to offer protection.

HP Switch

If the head pressure control mentioned above were to fail, this device would save the chiller from damage from excessive pressure in the system. Components or the pressure relief valve can blow causing a catastrophic refrigerant leak.

Flow Switch

This device detects a lack of flow in the water system. Serious system failure would result if this part is not maintained properly. It needs to be periodically tested and adjusted at regular intervals.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Controls Analogue Inputs

The essential analogue inputs on a chiller are the Water In and the Water Out sensors. These are usually NTC (negative temperature coefficient) that is to say: if you hold one in between your fingers and warm it up- the resistance will start to drop off. They usually read in kilo ohms which can be read on a standard multi meter. The program looks at these two sensors and using an algorithm, it calculates the loading requirement of the compressor. They can read incorrectly, so a sensor offset function is available in the software for adjustment. This is just one of the many checks and procedures that we carry out during our maintenance visit.

Chiller Controls Relays

In the photo you can see wires from the various devices around the chiller, wired into a row of relays. These, in turn, are wired into the white relay board at the top. This relay board has several expansion boards linked into it which are held together with an electrical ribbon. Next, the relay board is wired into the PLC... 

Chiller Controls PLC

The reason for these steps in between a device and the PLC is for protection. Sensitive electrical components can be blown due to an earth shortage. At each stage there is a volt drop from 240v to 24v and then to 5vdc.The programmable logic controller is the nerve centre of the chiller. This is where all the inputs go to and where all the digital outputs are sent from. The controller on this chiller is Beijer Electronics- it comes blank from the factory. User keys to operate the chiller are positioned below the display. It can be programmed to run most chillers and indeed it is often seen in factories running anything. A laptop plugs into it and the software for the chiller is uploaded. On one visit, we found a fault with this controller. We bubble wrapped it and took it to our electronics laboratory at Head Office. The issue was easy to resolve- it was just dust tracking across the back of the PCB and so corrupting the program.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Controls Digital Outputs

The main digital outputs on this chiller are:

Compressor Run Signal

240v is sent to the compressor starter contactors. There are three: Star (lower amps for a soft start) then a timer switches over to Delta (higher amps for a more powerful running of the compressor) On the other end of the compressor windings is the Line contactor. This contactor runs with both the Star and the Delta contactors.

Float Valve

This is a camber where the level of refrigerant which is coming in from the condenser is detected. The level is transmitted to the PLC, where the program sends a signal to the expansion valve. It opens to the correct degree according to the load on the chiller.

Slide Valve

The compressor can run at 0% with the slide valve shut. When load is sensed from the Water In and Water Out sensors by the controller- the slide valve opens up. The position of the slide valve is detected by a potentiometer. This is calibrated from a minimum to a maximum position. The signal is 4-20 mA which the controller translates into the position of the slide valve.

MAXIMUS ADVANTAGE™

Whatever the problem with the controls, we can find a solution to resolve it. With years of industry experience and a fast supply chain, we offer a service that is second to none. Being able to retrofit is part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere.

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Scroll Chiller Compressor Maintenance

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

To read more about chiller control systems hit the Tag at the top of the page.

Read more about Chiller Control Basics on the Engineering Mindset | Click Here


Grey shell & tube chiller evaporator being maintained with centrifugal compressor above

Shell & Tube Chiller Evaporator Maintenance

With shell & tube chiller evaporator maintenance to be carried out- it was time to sign the permit to work and get going. There are 5 chillers in total, but 1 of the chillers had been dismantled by the previous company and is unlikely to run again. This left 4 flooded systems to be maintained while the factory was still in production. Therefore, it had been decided in the Method Statement that one chiller would be done at a time. The plant had been designed with N+1 in mind, as it is critical not to loose the process- causing a factory shutdown. This means that so long as 2 of the chillers are running, there will be no loss in production. With 1 chiller out of service and another being worked on, this left 3 chillers in operation. If 1 were to fail, then there would still be the minimum of 2 left running.

Hire Chillers

In the unlikely event that 2 of the 3 chillers left running were to fail, an action plan was in place to lift in 1 MW of hire chillers.

Pump Sets and Hoses

The hire chillers would come with 2 engineers to pipe the pump sets into the onsite water system. This water system has been designed with this in mind so ‘stab ins’ have been built into it with shut off valves for the connection of temporary hoses.

Vanes

The chilled water is close control with a critical 6°C to 8°C set point. The chillers in the photo are very good at achieving this close control as they use vanes on the inlet to the suction. These vanes can be adjusted from anywhere between fully closed, with a small amount of bypassing, to fully open.

0161 370 7193

service@maximuschillers.com

Contact Form

Buffer Vessel

The hire chillers, on the other hand would not be close control. They would be multiple system chillers with various stages of loading on each chiller. One 600 kW chiller and another 400 kW. Each of the chillers onsite are 1.3 MW, but as they never run at 100% the onsite maintenance manager agreed to the proposal. It is unlikely that this plan would be needed, but planning for it is critical. A 10,000 ltr buffer vessel was decided upon to make the hire chillers close control. The chillers discharge into the buffer vessel, then the water mixes around before returning back to the chillers. The process water too being discharged into the buffer vessel before returning to the process. The position of the inlet and outlet on both water systems being strategically decided upon to ensure a steady exchange of heat and a smooth water out temperature back to the process.

Valve off and Drain Down

The Water In and Water Out pipes were valved off and the contents of the evaporator drained down. There was no glycol or chemicals in the water system which made the job easy. Otherwise, the water in the evaporator would have to have been pumped into vessels for disposal.

End Plate Removal during Shell & Tube Chiller Evaporator Maintenance

The lift and shift team were on site to assist with the removal of the end plate. After the bolts were removed, they attached their lifting eyes and straps, then lifted the end plate to the side.

Evaporator Cleaning 

We have in our stores a specialist evaporator cleaning tool. After a period of time, the evaporator tubes become fouled with impurities picked up from the water system. Also, contaminants get in from the air into the water tower. The strainer has some effect, but thermal insulation builds up on the water side of the tubes. It prevents latent heat being absorbed into the fridge system from the process. After the cleaning process, the efficiency of the copper tubes was increased to the same level as when the chiller was new. This is part of what we call the MAXIMUS ADVANTAGE Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere. 

Reassembly after Shell & Tube Chiller Evaporator Maintenance

The seal was replaced from our range of seal sizes, on the shelf in our stores. The reassembly being the reverse of the strip down, the lift and shift team aligning the end plate for refitting on guide runners. It was then tightened to the correct torque setting. A little at a time, the water system valves were opened until full flow and water system pressure was achieved. No leaks occurred, so it was time to go on to the next phase of the job…

0161 370 7193

service@maximuschillers.com

Contact Form

Run Up after Shell & Tube Chiller Evaporator Maintenance

After bringing this chiller back online, it went through a timer, then loaded up steadily to 68%. The refrigerant system readings had been taken previously, so they were compared to the readings taken after the job. A lot more heat transfer being achieved with more latent heat being absorbed from the process.

Remaining Chillers

The above mentioned process was repeated to the remaining chillers one at a time. No issues were encountered and the whole job proceeded steadily to completion.

Compressor Loading

The load from the factory is very steady, so each time another chiller evaporator was cleaned, the row of chillers would unload slightly. They were running at 72% on arrival, then 68%, then 63% then 59%. This was demonstrated to the customer as a visual way of proving how we had improved the efficiency of his plant. Compressor unloading uses less electricity, so lower carbon emissions and a lower electricity bill are the direct result of our maintenance. Also, kilowatt hour meters are linked to the maintenance manager's computer for monitoring.

Shell & Tube Evaporator Chiller Maintenance Tidiness

As with all of our jobs, the work location of the chillers was left in a better condition than when we arrived. Any waste and unused items being recycled or returned to the stores on site or the stores at our Head Office. The chillers being wiped down and the end plates re painted. With regular maintenance, we at Maximus Chillers will take years off the life of your plant. It is not unusual for us to keep this kind of plant running for more than 50 years.

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Screw Chiller Compressor Maintenance

Scroll Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

To read more about shell & tube chiller evaporators hit the Tag at the top of the page.

Read more about shell and tube heat exchangers on Wikipedia | Click Here


Green chiller panel with doors open, showing contactors and PCBs during water chiller maintenance

Water Chiller Maintenance

Maximus chillers provides water chiller maintenance to all kinds of machines. Some of which have kilowatt hour meters fitted. This means we can monitor the reduction in energy consumption, directly as a result of our maintenance being carried out.

Efficient Water Chiller Maintenance

Maintenance is carried out to ensure every aspect of your chiller is running efficiently. We believe our maintenance checklist is the best in the industry. It looks in detail at the running conditions of the plant, component adjustments and the parameters in the controls. The checklist is used to assess if there are problems that are starting to occur before a safety shutdown happens. Below are some of the issues that we keep on top of to increase the efficiency of your plant.

Shell and Tube Insulation

The build up of dirt acts as an insulator in shell and tube heat exchangers. These are used for the evaporation and the condensing of the refrigerant.

The Evaporator

In the evaporator, should the tubes be fouled, there will be a reduction in latent heat absorbed into the system. This will cause the plant to stay on longer and use considerably more energy. Should the tubes become considerably fouled, the chiller will malfunction and eventually system shutdown will occur.

The Condenser

In a shell and tube condenser, the reverse of the above will occur. Tube fouling, acting as an insulator, will prohibit the rejection of heat from the system. The head pressure control will open the condenser controls to try and assist in heat rejection. Heavy fouling will cause an increase in the consumption of energy. Eventually a safety shutdown will occur causing loss of production.

0161 370 7193

service@maximuschillers.com

Contact Form

Compressor Loading during Water Chiller Maintenance

If the loading of the reciprocating compressors is faulty, the plant will not be able to effectively match the load.

Over Loading

Too much loading may occur, causing the water chillers to achieve set point too quickly. The plant will then go through the off cycle. This means that the plant will have to load back up, using more energy than matching the load continuously.

Under Loading

Should the plant be unable to load up to the required level to match the load, this will cause the water temperature to creep up and the lag chillers being called for to match the load. More chillers running than necessary dramatically increases energy consumption.

Related Articles:
R134a Chilling Plant Maintenance

Air Cooled Chiller Planned Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Chiller Maintenance Checklist

Planned Preventative Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

Visit the Refcom site to read about leak checking during water chiller maintenance | Click Here


Translate