Centrifugal Chiller Compressor Maintenance

Grey centrifugal chiller compressor being maintained

Centrifugal Chiller Compressor Maintenance

Centrifugal chiller compressor maintenance keeps your critical plant up and running and your customers happy. The work can be scheduled to be carried out during factory shutdown, so as not to disrupt your production. We can also carry out this work to your compressors while the factory is in production. This is achieved by isolating the compressor that needs to be worked on when it is in an off cycle. The compressors on remaining machines can carry on running.

Tasks during Centrifugal Chiller Compressor Maintenance

Here are some of the tasks that we carry out…

Oil Changes

The oil becomes dirty over time by picking up contaminants that have formed in the system. Two of these contaminants are…

Acid

Compressor discharge is the hottest part of the refrigerant cycle. Acid can be formed from the refrigerant in this part of the system.

Refrigerant Types

A popular refrigerant for centrifs is R134a. Because it consists only of one kind of refrigerant, it does not fractionalise into different component refrigerants. This would be no good for a flooded system because one or more of the refrigerants would end up in the bottom of the evaporator and condenser. The remaining refrigerant would circulate and the whole plant would not function as it should. Refrigerants popular for other kinds of system are zeotropic HFC refrigerants. This means that the different component refrigerants have different boiling points- R407c is a good example.

Metal

White metal from the compressor and copper from the heat exchangers end up in the oil. They will eventually be caught by the system oil filters…

Oil Filter Change

After completing the above, now is a good time to change the filter as the compressor is valved off and has been broken into. It is also when an oil sample is taken depending on the schedule…

Oil Samples during Centrifugal Chiller Compressor Maintenance

Our oil samples are transported using our specialist kits which include the bottles and labels. This saves mix ups in our laboratory during the analysis.

Leak Rectification

The drawback of carrying out the above are leaks because the pressure has been pumped out of the compressor into another part of the system. The ‘o’ rings and shaft seal can now leak, this kind of failure can be rectified whilst still on site by the knowledge of our engineers.

0161 370 7193

service@maximuschillers.com

Contact Form

Oil Pre Lubrication

When the compressor starts, the oil pressure is built up first using an oil pump. This is so the internal components such as the high and low speed shaft are properly oiled before they start to rotate. They can run at 10,000 RPM and are very expensive to replace. Therefore, we check the oil pressure gauges and the system controls to ensure optimum ‘pre lubing’ of your compressors.

Volumetric Efficiency

The ratio between the volume actually compressed and the theoretical volume derived from compressor design calculations. This kind of compressor has a lower volumetric efficiency than positive displacement compressors. It is because the refrigerant is compressed off the tip of the rotating impellor or impellors. The refrigerant moves outwards in a circular path due to centrifugal force. A centrif more than makes up for this lower volumetric efficiency by the high mass and volume of the refrigerant that it circulates around the system.

Design 

The refrigerant is sucked from the evaporator into the centre of the impellor which is a disc of radial blades positioned to direct the refrigerant outwards. Due to the low differential of pressure, multiple stages of impellors are often arranged in series with the discharge being directed onto the suction of the next impellor. This is simple in design with less moving parts than some other compressor types. Modern centrifs can have magnetic, levitating bearings and so remove the need for oil in the system altogether. The faster the speed, the better the efficiency- so high speed rotation of the impellor is achieved at full load. The compressed refrigerant is discharged into the condenser.

0161 370 7193

service@maximuschillers.com

Contact Form

Electric Drive Centrifugal Chiller Compressor Maintenance

Most modern centrifs are driven by variable speed drives. This is for efficiency as the load can be exactly matched. Another reason for this is to soft start the compressor. 415v and 3.3kv are popular volt inputs, although other voltages can be made available by the onsite transformer.

Open

An open drive electric motor is the most popular design. It has the drawback, however, of needing a shaft seal which needs to be replaced at periodic intervals. This shaft seal is also prone to leaking refrigerant and oil.

Semi Hermetic

The photo is of a semi hermetic design of this compressor type. The motor is contained inside the suction housing and so has the benefit of being cooled by the refrigerant. No shaft seal is needed and therefore it has none of the associated maintenance drawbacks.

Steam Drive Centrifugal Chiller Compressor Maintenance

On oil rigs there can be an abundant supply of steam that can be used to drive the compressor. It is often used on multi stage compressors which are used for the liquefaction of natural gas. The steam goes through a turbine which is connected to a shaft- this drives the impellors. The steam flow and pressure can be tested and adjusted during the visit.

Woops Something Went Wrong

When you suffer a centrifugal compressor failure- don’t worry. You are in safe hands with the team here at Maximus Chillers. We have a team who can get the compressor out and lift it to the workshop on site, or transport it to our Head Office. We have another team who are experts in the remanufacturing of this kind of compressor. A fast supply chain is in place for delivery of the internal moving parts, gaskets and bearings. We are so confident that you will be happy with us- we offer a 12 month warranty on all of our compressor rebuilds.

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Chiller Controls

Scroll Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

To read more about centrifugal chiller compressors hit the Tag at the top of the page.

Read more about centrifugal compressors on The Engineering Mindset | Click Here

 


6 green Bitzer scroll compressors being maintained in a chiller

Scroll Chiller Compressor Maintenance

Here at Maximus Chillers, we carry out scroll chiller compressor maintenance to extend the lifespan and reduce downtime to your critical plant. This planning ahead is central to how we do things- we resolve small problems before they become big problems. Having the capability to do anything is part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere.

How they Work

The refrigerant vapour passes in between two scrolls (spirals) One of these is fixed, the other orbits backwards and forwards against the fixed scroll using a swing link. This creates a series of crescent shaped gas pockets in between the scrolls. These gas pockets get smaller in size as the refrigerant travels from the suction at the edge, down the spirals to the discharge at the centre. It then leaves downwards through a port. There are check valves to prevent back feeding of refrigerant during off cycles when other compressors on the same system are still running.

Advantages

There are several gas pockets occurring at any one time through the scroll, therefore giving a smooth and continuous compression cycle. Other advantages are low internal friction resulting in a quiet operation and low vibration levels. These low vibration levels help to lower the occurrence of leaks around the compressor.

Oil Level during Scroll Chiller Compressor Maintenance

The correct oil level is noted on our detailed Tick Sheets for all of the compressors. This record helps with the diagnosis when things start to go wrong. We can look for a pattern where the level starts to drop off in the compressors on a particular system, then look at the other readings which may be the cause.

Oil Samples during Scroll Chiller Compressor Maintenance

At periodic intervals, we take oil samples which we analyse in our laboratory at Head Office in Droylsden. We look for white metal, coloured metal, refrigerant composition, acid and sludge. This means that we can notice, then resolve system issues before a costly compressor failure occurs.

Oil Changes during Scroll Chiller Compressor Maintenance

This kind of compressor is fitted with a service port for the draining and filling of oil. The correct procedure is followed due to system pressure being present inside. We then carry out the oil changes using our specialist oil handling tools. Our skilled engineers carry the correct PPE for the work being carried out. We also we provide Risk Assessment Method Statements for each job.

0161 370 7193

service@maximuschillers.com

Contact Form

Crank Case Heaters

In the photo you can see the silver band of the crank case heaters at the bottom of the compressors. They keep the oil at the required temperature so as to not cause compressor wear on start up. The heaters also have the effect of ensuring that the refrigerant cannot condense into liquid during cold weather. As a compressor cannot compress a liquid, compressor failure would occur. A normally closed contact on the delta compressor starter contactor usually runs the heater: it drops out when the compressor starts. The function of all of these heaters is checked on each maintenance visit.

Discharge Temperature

It is critical that the discharge temperature is not too high, as this is the cause of the refrigerant breaking down into acid and sludge as previously mentioned. The acid rots the insulation on the copper windings inside the compressor. When this has occurred, an electrical failure will result in the compressor, causing the fuses to blow and a fault condition on the chiller. Compressor swap out is the cure which is expensive and inconvenient. We take the discharge temperature readings during the maintenance so as to fault find the cause.

Suction Pressure

Adequate suction pressure is needed to ensure good oil return to the compressor and prevent low pressure trips. As the refrigerant entrains the oil around the system, a good mass flow rate is needed, or the oil will just ‘pool’ in the bottom of the evaporator. Poor oil return will result in a seized compressor. Therefore, particular attention is taken to the low pressure gauge by our engineers. System adjustments or recommendations are made to ensure the seamless operation of your plant. If system overhaul is required, a Quote will be submitted at the end of the visit.

0161 370 7193

service@maximuschillers.com

Contact Form

Compressor Holding Down Bolts

There are usually four of these on each compressor. They fit though a steel sleeve which, in turn, fits through a rubber mount. The whole assembly is bolted into the frame of the chiller. The function is to securely hold the compressor in place and to dissipate vibration. We check the tightness is correct with our torque wrenches and change the rubbers periodically. A compressor rattling around uncontrollably, especially during start up and stopping causes catastrophic leaks around the compressor. This usually leads to the whole, or the most part of the refrigerant charge being lost to atmosphere.

Motor Protection Module

A resistance sensor embedded in the compressor windings plugs into this module on the S1 and S2 terminals. The fault feedback to the controls is on the M1 and M2 terminals. The power supply to the module is on the L and N terminals. When the windings start to get hot, the module detects this after a pre determined level of resistance is reached. The M2 terminal opens and volts drop out to the relay board, then a lower volt control signal drops out to the controller. We check the sensor resistance and compare it to a chart to ensure it is within the allowable range on each visit.

Wire Tightening during Scroll Chiller Compressor Maintenance

We waggle the motor connectors and check for any cracking to the wires which may lead to an earth sort out. We tighten the wiring on the compressor starter contactors and check the condition of the contactor contacts. These become ‘splattered’ causing an uneven amount of amps to the compressor. This volt drop causes the contactors to fail and will eventually cause compressor motor failure. We change the contactor contacts from our range of parts at Head Office.

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

To read more about scroll chiller compressors hit the Tag at the top of the page.

Read more about scroll compressors on Wikipedia | Click Here


Oil return solenoid removed during industrial chiller service

Industrial Chiller Service

On an industrial chiller service visit, the ammonia alarm was found to have been triggered.

News Article No.10

Industrial Chiller Service Faults

The onsite engineer had fault found the chiller and silenced the alarm, the yellow light was still flashing. The red light was lit on the panel and the red LED was illuminated on the ammonia alarm console. He had reported a smell of ammonia to us over the phone. This gave us a priority of getting to site, as many other alarms of this nature are often spurious. Our engineer attended site within an hour and confirmed that the fault finding was correct as described by the onsite engineer. The chiller is containerized in design as it is situated outside. All around the chiller are door panels for access to the various system components.

Breathing Apparatus and PPE

He donned his mask and full length ammonia resistant PPE before opening one of the panel doors. This was to ensure that he did not get overwhelmed by the refrigerant when he opened the door. He started with the door into the storage area of the containerized chiller. A strong blast of ammonia came out in his face- lucky for the PPE!

Localising the Fault

Working his way around the chiller, our engineer found more and more hazardous door openings! Eventually he found the culprit: one of the two flanges were leaking on the oil return solenoid. The refrigerant vapour was coming out in its usual white form. The oil return pipe feeds off the oil pot which is a chamber that the oil sinks into from the refrigerant economizer. This vessel was valved off and the other end of the pipe valved off too.

Pinpointing the Fault

Now that the ammonia refrigerant leak had started to calm down- it was possible to see through the white vapour to exactly which of the flanges was leaking. It was the right one as seen in the picture. It consists of an ‘o’ ring made of ammonia resistant rubber material.

0161 370 7193

service@maximuschillers.com

Contact Form

Industrial Chiller Service in Local

The above mentioned chiller runs in local in a lead/ lag configuration with the adjacent chiller. That is to say- there is no wire or modem to a remote location. A panel is available in between the two chillers to sequence the switch over between the two. When the chiller tripped out due to the fault, the other chiller was supposed to have been enabled. This did not happen, so our engineer investigated the situation. The sequencer panel sends out a 24v fault feedback signal to each chiller. This, in turn, goes through a relay and back to the sequencer panel if all is good. When a fault occurs, the volts drop out to the relay in the chiller and a relay drops out in the sequencer. When the relay drops out in the sequencer, a normally closed contact makes and brings a red light on. This was not happening, so our engineer followed it through with his multimeter. He found a blown 1 Amp control fuse in the chiller, he replaced it and it blew again. After some careful research he found that there was an earth leakage due to the ingress of water into a safety switch. This switch was nothing to do with the above, but it blew the whole control circuit. Having reinstated the fuse, he found that the panel switched over satisfactorily in local.

Advantages

This kind of operation method has an advantage in its simplicity. There are no complicated BMS systems for the chiller to be integrated into. A sequencer panel is easy to construct and maintain- keeping the costs down to the end user.

Disadvantages

The disadvantage of this kind of system is that the first thing the factory usually notices is that they are loosing the process. The water temperature getting too high is the first alarm signal. With this site, however, there is a permanent onsite engineer on hand. He is experienced with the first checks to carry out and can often get the plant running with no problem.

0161 370 7193

service@maximuschillers.com

Contact Form

Standing Pressure during Industrial Chiller Service

The standing pressure was taken into account on the return visit to fit the oil return solenoid valve seal. Because the valve is on the low side of the system, when the chiller is off, the pressure is higher than when it is on. Therefore, so long as the seal pressure tests to this pressure, then all will be good when the system is running. That is assuming that the valve seals work satisfactorily at a lower temperature range. There are issues sometimes when a seal will be okay at ambient temperature but will leak when it becomes brittle at a colder temperature. This happens usually on an old seal and, indeed, this condition can be tested for when run testing the system.

Leak Testing during Industrial Chiller Service

On fitting the seal, our engineer donned full length ammonia resistant PPE and breathing apparatus. A little at a time, he introduced refrigerant into the area of the valve seal. Any residual air being purged through a valve.

Pressure and Temperature

The standing pressure of refrigerant is affected by temperature. That is to say- that the higher the temperature- the higher the pressure. On the day this job was carried out, the ambient temperature was 12°C and using an app on his phone, he calculated that the pressure should be 5.6bar. This is consistent with Charles’ Law of Constant Volume with a coefficient added for this particular refrigerant. If the pressure had been higher than this, it would indicate the presence of air in the system. Daltons’ Law of Partial Pressures states that all gasses in a vessel will act as if they are on their own, therefore, causing a higher pressure.

Run Testing during Industrial Chiller Service

After the pressure was built up to full standing pressure and the seal held satisfactorily, the system was then run tested to ensure, as stated above, that the seal performed well across the full temperature range during the operation of the plant.

0161 370 7193

service@maximuschillers.com

Contact Form

Mass Flow Rate during Industrial Chiller Service

The mass of refrigerant passing, which is measured by the second.

Suction Density

In this case of the oil return valve seal, we are looking at the density of the low side refrigerant as it passes into the suction port of the compressor. This is shown on the LP gauge near to the compressor. The higher the pressure of the refrigerant, the more refrigerant there is- so it has a higher mass flow rate. This system has a refrigerant saturation point of 1°C which corresponds to a pressure 3.4bar. That is a high mass flow rate for this kind of refrigerant. This is because this refrigerant is usually used in low temperature applications where the pressure of the refrigerant is below that of the atmosphere. In that condition, when a leak occurs on the low side of the system- air leaks in. Air bleed valves are available to remove this unwanted air from the system.

Compressor Loading

The bigger the compressor on a chiller- the higher the mass flow rate. Most compressors have loading solenoids, vanes, or a slide valve to regulate this.

Piston Displacement

Reciprocating compressors use loading solenoids to increase piston displacement. Usually, oil from the oil pump holds the piston valves open and so preventing compression on that cylinder. When more flow rate is needed- the loading solenoid de energizes- the piston valves drop and the cylinder comes into action. Therefore, increasing the mass of refrigerant through the compressor.

Vanes

Vanes are used on centrifugal compressors to increase the flow of refrigerant through the compressor. An actuator linked to a chain is used to open the vanes. The controls work out the correct position of the vanes for a given load condition.

Slide Valve

The slide valve offers a seamless amount of loading, anywhere between 0% and 100% A slide valve potentiometer senses the position of the slide so that the controls can regulate the flow through the compressor. The screw compressor in this article uses a slide valve- on full load with the slide at 100% all readings were taken with a good read back. Another job done- another happy customer!

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Breakdown

Chiller Service Company Visit

Chiller Fault Finding & Diagnosis

To read more about chiller fault finding hit the Tag at the top of the page.

Read more about refrigerant mass flow rate at Science Direct | Click Here


PLC and relay board in a panel during chiller service company visit

Chiller Service Company

Electrical Testing

A chiller service company can carry out electrical testing and diagnosis even when a wiring diagram is not available- our engineers can trace the wiring around a chiller.

News Article No.3

Doing this often aids with the diagnosis even when there is a wiring diagram, as having your eyes on a component often makes more sense than a symbol. In any case, our engineers carry out system testing with Fluke multimetes and ammeters.

F-gas Leak Testing by Chiller Service Company

We also carry a range of thermocouples and probes to be used in conjunction with our calibrated digital thermometers. We use these along with comparators to carry out leak testing. After fitting the probes, we first have a visual look around for a sign of a gas leak. All parts of the pipework and system components are inspected. Then, we carry out a full refrigerant diagnosis to determine that the refrigerant system is operating with a full charge. Reports for each chiller are completed and filed in the onsite F-gas leak register. A history can be built up to assess the serviceability of the plant and the frequency of any leaks.

Chiller Service Company Monitoring

Where intermittent faults are concerned, on site monitoring is required. If the job is not progressed on each visit, there is little point in a call out. We carry out tests during monitoring and ensure that the wiring is tight. Hopefully, waiting for the fault to occur whilst next to the machine. Alongside this, we rely on feedback from the end user, as regards, the symptoms and the circumstances of the chiller when the fault occurred. From this we extrapolate the diagnosis and decide the next step to take. This may be to attempt to move the fault to another machine or, at least eliminate one thing each visit.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Service Company Evaporators

Shell and Tube

These have a rolled steel shell, welded down the seam with and end plate on either end. The water system pipes can be bolted to the sides or the end. The endplate can be removed for access to the waterside of the tubes. A strainer is fitted to the inlet to catch any foreign objects that may have been carried around the water system. Inlet and outlet gauges are fitted for the monitoring of the water system readings during a visit. 

Flooded

On larger chillers, the screw or centrifugal compressor is mounted directly on top of the flooded evaporator. The refrigerant is in its liquid phase on the outside of the tubes. These are arranged in a rack extending through the length of the shell. The warmer process water running through the tubes causes the refrigerant to boil off. A sight glass is usually available to check the state of the refrigerant evaporating on the copper tubes. The suction from the top of the evaporator goes round a baffle so as to prevent the slug back of liquid refrigerant into the compressor. The refrigerant flow into the evaporator is controlled by the expansion valve…

Expansion Valves

This takes the form of a fixed size orifice on the liquid line in between the shell and tube condenser and the flooded evaporator. The size of the orifice previously being calculated to match the mass flow rate of the refrigerant dictated by the compressor. Some newer systems have a variable orifice for the more efficient running of the plant. This is controlled electronically along with the loading of the compressor, relative to the available load.

Multiple System N+1

Smaller DX evaporators are usually multi system. This gives an N+1 redundancy of the plant. Indeed, when one side of a 2 system evaporator is having service work carried out, the other side continues to operate normally. Thinking ahead and allowing for additional capacity is essential when the application is critical, such as, a data centre or a hospital. When a redundant system comes online due to a failure- getting the failed system back up and running is a matter of urgency. For this we offer same day delivery of parts and a fully stocked mobile workshop.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Service Company Condensers

Various configurations are employed to ensure good air flow through the condenser fins. The most popular being a ‘v’ condenser as the surface area is increased with this design. Powerful fans are used to reject the air and heat upwards and away from the chiller. Where system location causes the recirculation of air, duct work can be fitted to direct the air away from the chiller. The pressure is monitored using a HP gauge.

Pressure Transducers

Johnson Controls

A popular kind of pressure transducer that is used on condensers is Johnson Controls. These can be bolted onto the refrigerant discharge pipe to sense the system pressure. They have a 5vdc input that comes into the transducer on a red wire, a black wire is the ground and a white wire is the signal back to the fan speed controller. The transducer has a minimum to maximum range, so a chart can be used to determine if the signal is reading back correctly. On chillers where the transducer is wired directly in the controller- calibration can be carried out to offset the readings.

Keller

Another kind of pressure transducer is the 4-20mA type. It sends a mA signal back to the controller or the fan speed controller. 4mA is the minimum position, so this relates to the minimum of the transducer pressure range.

R134a Refrigerant

R134a refrigerant operates at a lower pressure in a condenser than the other commonly used HFC refrigerants. If you were looking for a chilled water set point of 6°C in the UK ambient for example, the R134a refrigerant saturation on the high side of the system would be around 36°C Latent heat from the water system and heat added into the refrigerant from the compressor are rejected from the condenser. As the refrigerant passes down the condenser tubes, cool air blowing across the outside of the tubes, cools the refrigerant vapour down through the latent heat phase and into a subcooled liquid.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Service Company Compressors

Centrifugal Compressors

This kind of compressor has a lower volumetric efficiency compared with the positive displacement compressors below. This is because the refrigerant is compressed using centrifugal force off the tip of the impeller, instead of being mechanically compressed. The advantage of this kind of compressor is a high mass flow rate of refrigerant. These compressors are used in factories where a large amount of chilled water is required to cool the process. They are also used in countries where district cooling is used. The chillers are arranged in rows in a chiller hall and are piped into the district cooling loop.

Screw Compressors

Oil used to lubricate the bearings is also used to create a seal between the rotors. Computer aided design (CAD) software and computer numerical control (CNC) grinding machines are used in the construction of screw rotors. The shape of the rotors is designed to compress the refrigerant along the screw. The length of the screw that is available to compress the refrigerant can be adjusted with a slide valve. Any stage of loading between 0- 100% can be achieved. This is regulated with a slide valve potentiometer. Screw compressors are very reliable and have a long service life. They also have a low vibration reading which ensures a lower instance of refrigerant leaks around the compressor.

Scroll Compressors

A service free compressor. Service free assuming that the rest of the system is functioning correctly. This kind of compressor relies on oil migration around the system. The oil is entrained along the inside of the pipework, around the system and back to the compressor. An oil level sight glass is fitted into the body of the compressor at the required level. Refrigerant shortage can cause the oil to stay in the bottom of the evaporator, causing a low oil level condition in the compressor. We can be scheduled to attend site to drain the oil, then pump new oil into the compressor.

Compressor Failure

When any of the above compressors fail, you are in safe hands with Maximus Chillers. We have the capability to lift and shift the compressor to our remanufacturing facility for a full overhaul. The reason for the failure is diagnosed to ensure the new compressor does not fail for the same reason. Improving the reliability of your plant and extending its life is what we are all about- if we can reduce your service costs- that makes us happy! All temperatures and pressures are recorded to ensure the replacement compressor goes into seamless operation.

Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere- The MAXIMUS ADVANTAGE™

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Breakdown

Industrial Chiller Service

Chiller Service Company Visit

Chiller Fault Finding & Diagnosis

To read more about chiller diagnosis hit the Tag at the top of the page.

Read more about pressure sensors on Wikipedia | Click Here


Two dark green centrifugal chillers undergoing maintenance in plant room

Centrifugal Chiller Maintenance

At the beginning of the year we completed centrifugal chiller maintenance for one of our customers in America. A last overseas trip for the moment given the current world lockdown. The machines in the photo chill water that is pumped around a university campus.

Centrifugal Chiller Maintenance of Redundant System

The plant has a water cooling shell and tube evaporator and a water cooled shell and tube condenser. It has been designed according to the N+1 principle: N being the amount of cooling required and 1 being that same amount of cooling again. Each chiller has enough capacity to satisfy demand. Given the large size of the campus, this principle was critical to keeping the University functioning should system failure occur. The chiller on the right was the lead chiller on arrival. After taking detailed readings during the maintenance, our engineer switched that chiller over into being the lag chiller and took readings from the chiller on the left. He rotates the lead/ lag of the chillers on each visit to balance the run hours of the compressors.

Volumetric Efficiency

Centrifugal chillers have a lower volumetric efficiency compared with positive displacement compressors such as screws and recips. This is because the impeller does not mechanically compress the refrigerant like a piston in a reciprocating compressor. This kind of compressor relies on centrifugal force to spin the refrigerant off the tip of the impeller and onto the next stage. The refrigerant is then discharged from the compressor.

0161 370 7193

service@maximuschillers.com

Contact Form

Mass Flow Rate

The above is more than compensated for with a high mass flow rate. That is to say: a high volume of refrigerant circulates around the system at its operating density. A large capacity machine is cost effective when considering energy efficiency and centrifugal chiller maintenance costs.

Gantry Crane for Centrifugal Chiller Maintenance

The gantry crane in the picture is available to aid with the lift and shift of the compressor, should compressor failure occur. Maximus Chillers are specialists in the overhaul of centrifugal compressors. We can arrange the lift out, transportation, strip down and reassembly of your compressors. All of our strip downs come with a 12 month warranty to give you peace of mind and confidence in our ability.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Chiller Maintenance Checklist

Glycol Chiller Maintenance

Planned Preventative Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

Follow this link to read about centrifugal compressors at The Engineering Mindset | Click Here


Industrial refrigeration oil change showing ammonia warning sign

Industrial Refrigeration Oil

An industrial refrigeration oil visit was arranged because of a return issue. Several fans had been down on the air cooled system. This causes the system to unload so as to prevent a fault occurring. The lower mass flow rate of the refrigerant caused oil to migrate to the low side of the system. Several vessels are available with various forms oil return. These vessels and the oil cooler were valved off. A two man team with the correct ammonia PPE and breathing apparatus carried out the job.

Industrial Refrigeration Oil Recovery

Only some of the oil was recovered from the plant. Therefore, the engineers decided to add new oil to get the system running. The only problem with doing this is that once running the machine, the oil has to be got back out. Therefore, the oil had to be adjusted a second time to resolve the oil return issue.

0161 370 7193

service@maximuschillers.com

Contact Form

Fan Decks

For this visit, scaffolding had been erected in accordance with the Risk Assessment. The old fan decks were lifted out by the two man team. A really good team was sent out: one of the men was more technical and the other more mechanical- complementing each other with their different skill sets. The new fans were an updated version and the wiring was different. The fault link had to be adapted, but the 0-10v input from the controller was the same. The controller reads the pressure from a transducer, then sends out a voltage which the fan turns into the corresponding speed.

System Testing

The fault link had been correctly modified, so the testing of the system was carried out. The machine loaded up to 62% and monitoring continued during the rest of the visit.

Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere- The MAXIMUS ADVANTAGE™

Related Articles:
Industrial Refrigeration Sludge

Industrial Refrigeration Ammonia

Read More about International Institute of Ammonia Refrigeration Technology and Standards.

 


Translate