Scroll Chiller Compressor Maintenance

6 green Bitzer scroll compressors being maintained in a chiller

Scroll Chiller Compressor Maintenance

Here at Maximus Chillers, we carry out scroll chiller compressor maintenance to extend the lifespan and reduce downtime to your critical plant. This planning ahead is central to how we do things- we resolve small problems before they become big problems. Having the capability to do anything is part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere.

How they Work

The refrigerant vapour passes in between two scrolls (spirals) One of these is fixed, the other orbits backwards and forwards against the fixed scroll using a swing link. This creates a series of crescent shaped gas pockets in between the scrolls. These gas pockets get smaller in size as the refrigerant travels from the suction at the edge, down the spirals to the discharge at the centre. It then leaves downwards through a port. There are check valves to prevent back feeding of refrigerant during off cycles when other compressors on the same system are still running.

Advantages

There are several gas pockets occurring at any one time through the scroll, therefore giving a smooth and continuous compression cycle. Other advantages are low internal friction resulting in a quiet operation and low vibration levels. These low vibration levels help to lower the occurrence of leaks around the compressor.

Oil Level during Scroll Chiller Compressor Maintenance

The correct oil level is noted on our detailed Tick Sheets for all of the compressors. This record helps with the diagnosis when things start to go wrong. We can look for a pattern where the level starts to drop off in the compressors on a particular system, then look at the other readings which may be the cause.

Oil Samples during Scroll Chiller Compressor Maintenance

At periodic intervals, we take oil samples which we analyse in our laboratory at Head Office in Droylsden. We look for white metal, coloured metal, refrigerant composition, acid and sludge. This means that we can notice, then resolve system issues before a costly compressor failure occurs.

Oil Changes during Scroll Chiller Compressor Maintenance

This kind of compressor is fitted with a service port for the draining and filling of oil. The correct procedure is followed due to system pressure being present inside. We then carry out the oil changes using our specialist oil handling tools. Our skilled engineers carry the correct PPE for the work being carried out. We also we provide Risk Assessment Method Statements for each job.

0161 370 7193

service@maximuschillers.com

Contact Form

Crank Case Heaters

In the photo you can see the silver band of the crank case heaters at the bottom of the compressors. They keep the oil at the required temperature so as to not cause compressor wear on start up. The heaters also have the effect of ensuring that the refrigerant cannot condense into liquid during cold weather. As a compressor cannot compress a liquid, compressor failure would occur. A normally closed contact on the delta compressor starter contactor usually runs the heater: it drops out when the compressor starts. The function of all of these heaters is checked on each maintenance visit.

Discharge Temperature

It is critical that the discharge temperature is not too high, as this is the cause of the refrigerant breaking down into acid and sludge as previously mentioned. The acid rots the insulation on the copper windings inside the compressor. When this has occurred, an electrical failure will result in the compressor, causing the fuses to blow and a fault condition on the chiller. Compressor swap out is the cure which is expensive and inconvenient. We take the discharge temperature readings during the maintenance so as to fault find the cause.

Suction Pressure

Adequate suction pressure is needed to ensure good oil return to the compressor and prevent low pressure trips. As the refrigerant entrains the oil around the system, a good mass flow rate is needed, or the oil will just ‘pool’ in the bottom of the evaporator. Poor oil return will result in a seized compressor. Therefore, particular attention is taken to the low pressure gauge by our engineers. System adjustments or recommendations are made to ensure the seamless operation of your plant. If system overhaul is required, a Quote will be submitted at the end of the visit.

0161 370 7193

service@maximuschillers.com

Contact Form

Compressor Holding Down Bolts

There are usually four of these on each compressor. They fit though a steel sleeve which, in turn, fits through a rubber mount. The whole assembly is bolted into the frame of the chiller. The function is to securely hold the compressor in place and to dissipate vibration. We check the tightness is correct with our torque wrenches and change the rubbers periodically. A compressor rattling around uncontrollably, especially during start up and stopping causes catastrophic leaks around the compressor. This usually leads to the whole, or the most part of the refrigerant charge being lost to atmosphere.

Motor Protection Module

A resistance sensor embedded in the compressor windings plugs into this module on the S1 and S2 terminals. The fault feedback to the controls is on the M1 and M2 terminals. The power supply to the module is on the L and N terminals. When the windings start to get hot, the module detects this after a pre determined level of resistance is reached. The M2 terminal opens and volts drop out to the relay board, then a lower volt control signal drops out to the controller. We check the sensor resistance and compare it to a chart to ensure it is within the allowable range on each visit.

Wire Tightening during Scroll Chiller Compressor Maintenance

We waggle the motor connectors and check for any cracking to the wires which may lead to an earth sort out. We tighten the wiring on the compressor starter contactors and check the condition of the contactor contacts. These become ‘splattered’ causing an uneven amount of amps to the compressor. This volt drop causes the contactors to fail and will eventually cause compressor motor failure. We change the contactor contacts from our range of parts at Head Office.

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

To read more about scroll chiller compressors hit the Tag at the top of the page.

Read more about scroll compressors on Wikipedia | Click Here


Oil return solenoid removed during industrial chiller service

Industrial Chiller Service

On an industrial chiller service visit, the ammonia alarm was found to have been triggered.

News Article No.10

Industrial Chiller Service Faults

The onsite engineer had fault found the chiller and silenced the alarm, the yellow light was still flashing. The red light was lit on the panel and the red LED was illuminated on the ammonia alarm console. He had reported a smell of ammonia to us over the phone. This gave us a priority of getting to site, as many other alarms of this nature are often spurious. Our engineer attended site within an hour and confirmed that the fault finding was correct as described by the onsite engineer. The chiller is containerized in design as it is situated outside. All around the chiller are door panels for access to the various system components.

Breathing Apparatus and PPE

He donned his mask and full length ammonia resistant PPE before opening one of the panel doors. This was to ensure that he did not get overwhelmed by the refrigerant when he opened the door. He started with the door into the storage area of the containerized chiller. A strong blast of ammonia came out in his face- lucky for the PPE!

Localising the Fault

Working his way around the chiller, our engineer found more and more hazardous door openings! Eventually he found the culprit: one of the two flanges were leaking on the oil return solenoid. The refrigerant vapour was coming out in its usual white form. The oil return pipe feeds off the oil pot which is a chamber that the oil sinks into from the refrigerant economizer. This vessel was valved off and the other end of the pipe valved off too.

Pinpointing the Fault

Now that the ammonia refrigerant leak had started to calm down- it was possible to see through the white vapour to exactly which of the flanges was leaking. It was the right one as seen in the picture. It consists of an ‘o’ ring made of ammonia resistant rubber material.

0161 370 7193

service@maximuschillers.com

Contact Form

Industrial Chiller Service in Local

The above mentioned chiller runs in local in a lead/ lag configuration with the adjacent chiller. That is to say- there is no wire or modem to a remote location. A panel is available in between the two chillers to sequence the switch over between the two. When the chiller tripped out due to the fault, the other chiller was supposed to have been enabled. This did not happen, so our engineer investigated the situation. The sequencer panel sends out a 24v fault feedback signal to each chiller. This, in turn, goes through a relay and back to the sequencer panel if all is good. When a fault occurs, the volts drop out to the relay in the chiller and a relay drops out in the sequencer. When the relay drops out in the sequencer, a normally closed contact makes and brings a red light on. This was not happening, so our engineer followed it through with his multimeter. He found a blown 1 Amp control fuse in the chiller, he replaced it and it blew again. After some careful research he found that there was an earth leakage due to the ingress of water into a safety switch. This switch was nothing to do with the above, but it blew the whole control circuit. Having reinstated the fuse, he found that the panel switched over satisfactorily in local.

Advantages

This kind of operation method has an advantage in its simplicity. There are no complicated BMS systems for the chiller to be integrated into. A sequencer panel is easy to construct and maintain- keeping the costs down to the end user.

Disadvantages

The disadvantage of this kind of system is that the first thing the factory usually notices is that they are loosing the process. The water temperature getting too high is the first alarm signal. With this site, however, there is a permanent onsite engineer on hand. He is experienced with the first checks to carry out and can often get the plant running with no problem.

0161 370 7193

service@maximuschillers.com

Contact Form

Standing Pressure during Industrial Chiller Service

The standing pressure was taken into account on the return visit to fit the oil return solenoid valve seal. Because the valve is on the low side of the system, when the chiller is off, the pressure is higher than when it is on. Therefore, so long as the seal pressure tests to this pressure, then all will be good when the system is running. That is assuming that the valve seals work satisfactorily at a lower temperature range. There are issues sometimes when a seal will be okay at ambient temperature but will leak when it becomes brittle at a colder temperature. This happens usually on an old seal and, indeed, this condition can be tested for when run testing the system.

Leak Testing during Industrial Chiller Service

On fitting the seal, our engineer donned full length ammonia resistant PPE and breathing apparatus. A little at a time, he introduced refrigerant into the area of the valve seal. Any residual air being purged through a valve.

Pressure and Temperature

The standing pressure of refrigerant is affected by temperature. That is to say- that the higher the temperature- the higher the pressure. On the day this job was carried out, the ambient temperature was 12°C and using an app on his phone, he calculated that the pressure should be 5.6bar. This is consistent with Charles’ Law of Constant Volume with a coefficient added for this particular refrigerant. If the pressure had been higher than this, it would indicate the presence of air in the system. Daltons’ Law of Partial Pressures states that all gasses in a vessel will act as if they are on their own, therefore, causing a higher pressure.

Run Testing during Industrial Chiller Service

After the pressure was built up to full standing pressure and the seal held satisfactorily, the system was then run tested to ensure, as stated above, that the seal performed well across the full temperature range during the operation of the plant.

0161 370 7193

service@maximuschillers.com

Contact Form

Mass Flow Rate during Industrial Chiller Service

The mass of refrigerant passing, which is measured by the second.

Suction Density

In this case of the oil return valve seal, we are looking at the density of the low side refrigerant as it passes into the suction port of the compressor. This is shown on the LP gauge near to the compressor. The higher the pressure of the refrigerant, the more refrigerant there is- so it has a higher mass flow rate. This system has a refrigerant saturation point of 1°C which corresponds to a pressure 3.4bar. That is a high mass flow rate for this kind of refrigerant. This is because this refrigerant is usually used in low temperature applications where the pressure of the refrigerant is below that of the atmosphere. In that condition, when a leak occurs on the low side of the system- air leaks in. Air bleed valves are available to remove this unwanted air from the system.

Compressor Loading

The bigger the compressor on a chiller- the higher the mass flow rate. Most compressors have loading solenoids, vanes, or a slide valve to regulate this.

Piston Displacement

Reciprocating compressors use loading solenoids to increase piston displacement. Usually, oil from the oil pump holds the piston valves open and so preventing compression on that cylinder. When more flow rate is needed- the loading solenoid de energizes- the piston valves drop and the cylinder comes into action. Therefore, increasing the mass of refrigerant through the compressor.

Vanes

Vanes are used on centrifugal compressors to increase the flow of refrigerant through the compressor. An actuator linked to a chain is used to open the vanes. The controls work out the correct position of the vanes for a given load condition.

Slide Valve

The slide valve offers a seamless amount of loading, anywhere between 0% and 100% A slide valve potentiometer senses the position of the slide so that the controls can regulate the flow through the compressor. The screw compressor in this article uses a slide valve- on full load with the slide at 100% all readings were taken with a good read back. Another job done- another happy customer!

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Breakdown

Chiller Service Company Visit

Chiller Fault Finding & Diagnosis

To read more about chiller fault finding hit the Tag at the top of the page.

Read more about refrigerant mass flow rate at Science Direct | Click Here


Chilling plant maintenance of grey machines with red warning signs

Chilling Plant Maintenance

We at Maximus Chillers carry out chilling plant maintenance in factories and facilities around the UK and overseas.

HFC Refrigerants

HFC (hydrofluorocarbon) chiller refrigerants were developed to be chlorine free. For a while they were seen to be the great new thing until the GWP (global warming potential) of the refrigerants became more of a concern. The release of these refrigerants from leaking systems dramatically increases the green house effect and so trapping more heat in the atmosphere. For this reason, F-gas regulations are phasing them down to 21% by 2030. Because of the 650kg charge in the chillers in the photo, we carry out leak testing at one month intervals. Where a leak is identified with this refrigerant, the system can be pumped out using the push/ pull method. There are no refrigerant system shut off valves available to allow the systems to be pumped down.

Chilling Plant Maintenance using Leak Detectors

We employ HFC refrigerant leak detectors to identify any leaks around the system. On systems of this size, there may be more than one leak, with a large leak alerting the attention of the engineer and the smaller leaks found subsequently. Our leak detectors are sent off periodically to be calibrated with the internal replaceable components upgraded as necessary.

Static Leak Detectors

Static leak detectors are available for each machine to catch any leaks as soon as they happen- before the one month intervals. This reduces the amount of refrigerant leaking to atmosphere and so adding to global warming. These leak detectors are bump tested on each visit to ensure reliability with replacements available on site, should one of them fail.

Chilling Plant Maintenance for One World

The above measures are essential with this kind of refrigerant in the interests of the environment. Basic checks now, protect the future of the planet. We only have one world, so we need to look after it as best we can. You can rest assured that you are in safe hands with how we handle this range of refrigerants.

0161 370 7193

service@maximuschillers.com

Contact Form

Shell and Tube Condensers

During the maintenance, we assess the subcooling values under part and full load to diagnose the efficiency of the shell and tube condensers. This kind of condenser is very popular with larger chillers in the UK. They are not sensitive to different weather conditions as the heat rejected into the condenser water system is pumped into the cooling towers outside of the plant room.

Chilling Plant Maintenance of Copper Pipework

The nest of pipes inside the shell are constructed using copper. This is because of the excellent heat transferring properties of this metal. On other sites where the refrigerant is ammonia for example, stainless steel is used as ammonia corrodes copper and most other metals or alloys. Thorough maintenance of the pipework is carried out on each visit.

Water System Maintenance

The water loop is inspected at various test points around the system with our range of test equipment. Where there are readings that are starting to go beyond nominal conditions, we carry out adjustment to bring them back into line. If the water system is behaving abnormally, this will in turn affect the efficiency of the condenser. In extreme circumstances, a system failure can occur causing a potential loss of production. Effective maintenance from Maximus Chillers has evolved over time to prevent this from happening in the first place. Each time we encounter a new issue, a thorough investigative process is carried out, the solution is arrived at and this is added into the routine.

Air Bleed Ports during Chilling Plant Maintenance

Air can be pulled into the condenser from the cooling towers outside. This can sit on top of the water in the condenser and so prevent the heat exchange of latent heat from the refrigerant and into the water. An air lock in the condenser amounts to that portion of the heat exchanger from not being in use. This dramatically affects the efficiency of the plant. We carry out checks to each condenser and bleed any air on each visit to ensure the best running conditions of the plant.

0161 370 7193

service@maximuschillers.com

Contact Form

Standing Pressure

One of the ways to assess the condition of the refrigerant is the standing pressure. Only during factory shut down are all the chillers off for long enough for the system pressures to stabilize and so have a consistent standing pressure around the system. The pressure readings can be taken and added into our software to determine the composition and purity of the refrigerant and the presence of non condensables. Where the refrigerant is found to be in poor condition, maintenance can be arranged to rectify the issue.

Coefficient of Performance

The coefficient of performance is the cooling effect compared to the amount of electricity used. In an inefficient system, a small amount of cooling is achieved relative to a large amount of electricity used. In this age of environmental concerns, we carry out extensive measures and adjustments to improve the COP. Not only is an efficient plant cheaper to run, it is better for the environment too.

Control Panels

The control panels for the chillers in the photo are defunct. That is to say- the component parts are no longer manufactured. I am sure there is the odd circuit board rolling around on a shelf somewhere, but we fit state of the art controls. Our supplier builds bespoke panels exactly suited to each particular machine. They are plug and play with associated sensors, transducers and vane loading actuators supplied. The panel is fixed next to the chiller, wired in and ready to go. All settings come as default, so just the odd one needs to be modified. The panel can be easily integrated into the existing remote start stop and variable speed drives.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Glycol Chiller Maintenance

Preventative Chiller Maintenance

To read more about shell and tube chiller condensers hit the Tag at the top of the page.

For further reading on Hydrofluorocarbon Refrigerants | Click Here


An engineer filling blue oil drums during industrial chiller maintenance

Industrial Chiller Maintenance

Reciprocating Compressors

Industrial chiller maintenance including a reciprocating compressor with 8 cylinders. They always have an even number of cylinders so that the compressor is balanced.

Open Drive

Because the refrigerant being used in this article is ammonia, the compressor is open drive. This is because ammonia corrodes the copper windings of the electric motor. An open drive compressor needs a shaft seal to prevent oil and refrigerant escaping from the system. These shaft seals are prone to wearing down and leaking. They have two mating surfaces that have a finish so smooth that it is like glass. Any oil leaking out of the system collects in a pot. This pot is monitored for the rate at which it fills up and so the deterioration of the shaft seal can be monitored. The swap out of the shaft seal can be arranged at a convenient time. This evolves the splitting of the shaft coupling to allow access to the seal.

Semi Hermetic

This means that the electric motor is internal to the compressor. Hermetic meaning sealed and semi meaning that you can bolt components off, such as, the cylinder heads. There is a significant advantage with this type of compressor design as there is no shaft seal. The compressor motor windings are also cooled by the suction vapour returning to the compressor from the refrigerant system. This compressor design is used with HFC, HFO, CO2 and Propane refrigerants. There are some semi hermetic compressors that are suitable for ammonia where the windings have been sealed from the refrigerant.

Scheduled Strip Down

This kind of compressor has a lot of moving parts that need to be replaced according to the run hours of the compressor. Failure to do so will lead to the compressor going out of balance and an expensive compressor smash up occurring. Usually during a smash up, a connecting rod will fly off causing oil to spurt out from the gallery. This causes a low oil pressure fault which stops the machine. One smash up which I have seen involved all the con rods staying on and flailing round the inside of the compressor. One cylinder was still working, the compressor still running and a sump full of different sized triangle pieces of metal! This highlights the importance of scheduled maintenance.

0161 370 7193

service@maximuschillers.com

Contact Form

Major Industrial Chiller Maintenance 

On a recent Major maintenance visit, the scheduled oil change was carried out. The required oil being selected by our oil analysis process to the correct viscosity for a Grasso reciprocating compressor operating at a 1°C saturation.

Oil Drain Out During Industrial Chiller Maintenance

The compressor was valved off from the rest of the system. The standing pressure of the vapour in the vessel was 5.8 bar. On the bottom of the sump is located an oil drain port, this is because it is the lowest part of the system. Using hoses and a valve, the oil was drained into empty oil drums.

Oil Pumping during Industrial Chiller Maintenance

Our engineer removed the old oil for recycling, then lifted the new oil to the work location. He used his portable oil pump to pump the oil in using the same port from which the oil was drained. The oil came to the correct level on the oil sight glass and the vapour was bled from the oil filter so that the compressor was primed with oil. When the system starts, the oil pump pushes the oil through to the cylinders of the compressor.

Industrial Chiller Maintenance Monitoring

The oil heater was switched on until the oil was 46°C. The chiller was then started and run tested. The Delta P across the oil filter was found to be nominal at 0.5 bar. The oil level remained at the correct level as the three way valve opened to the oil cooler. The oil cooler, in turn being cooled by a cooling loop which uses some of the tubes on the air cooled condenser.

0161 370 7193

service@maximuschillers.com

Contact Form

Industrial Chiller Maintenance and the MAXIMUS ADVANTAGE™

Any Chiller

We work on all kinds of chillers from the smallest Italian process chillers, through to large air cooled chillers and centrifugal chillers used for industry.

Any Problem

Problems are our bread and butter- that’s what we do best! Whether you require centrifugal compressor remanufacturing, or the system drying out after a burst heat exchanger- it’s all in a day’s work.

Any Part

We have an excellent supply chain where we pride ourselves on sourcing any part for your chiller. Where a part is no longer manufactured or is not available- we fit a different part. A chiller is just a chiller at the end of the day- we can achieve the same or better design characteristics and efficiency with a different part.

Any Refrigerant

HFC refrigerants are being phased down but are still the most popular variety. They are being superseded by HFO refrigerants which will become more popular over the coming years. We are also adept in the handling of natural refrigerants, such as, ammonia, propane and carbon dioxide.

Anywhere

When you do something as niche as what we do- you cannot expect to just work outside your back door. With blue chip customers around the UK and around the world- nowhere is too far for Maximus Chillers.

To read more about reciprocating chiller compressors hit the Tag at the top of the page.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Air Cooled Chiller Condenser Maintenance

Chiller Maintenance Checklist

Glycol Chiller Maintenance

Planned Preventative Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

Follow this link to read about polyolester oil on Wikipedia | Click Here

 


Translate