Reciprocating Chiller Compressor Maintenance

Two blue open drive Vilter reciprocating chiller compressors being maintained in a plant room

Reciprocating Chiller Compressor Maintenance

Reciprocating chiller compressor maintenance for two low temperature ammonia chillers. Reciprocating means a forwards and backwards motion in a straight line. This is achieved by converting the circular motion of the crankshaft, into a linear motion using the connecting rods. The pistons are on the end of the con rods, which slide up and down inside the cylinder liners.

Piston Rings

There are two types of piston rings which are used:

Compression Ring

This is the upper ring and is designed to a high tolerance to prevent the refrigerant vapour from bypassing the piston.

Oil Ring

This is the lower ring and is designed to regulate the oil flow around the piston.

0161 370 7193

service@maximuschillers.com

Contact Form

Cylinder Head

The cylinder head is usually cast iron and serves as a pressure plate. It holds the valve gear and has passageways for the suction and discharge of the refrigerant. The discharge pressure varies according to the kind of refrigerant and application. For a 0°C saturation it can be as low as 7 bar on R134a, or as high as 30 bar on R410a. The discharge temperature is usually around 60°C to 80°C which is recorded on our detailed Tick Sheet during the maintenance.

Valve Gear

Helix springs or reeds are popular with this type of compressor. Wave springs are another design that can be seen in operation on our YouTube channel. The video uses a cut away view and the oil is depicted in yellow. These springs control the suction (intake) and the discharge (exhaust) of the refrigerant…

Suction

The suction valves have the least amount of failures because the refrigerant is cool, low pressure and is carrying oil.

Discharge

The discharge valves, however, can have heavy molecules of hydrocarbons collect on them in the form of carbon. This causes them to not seat correctly, resulting in a deterioration of compressor performance. The difference in pressure between suction and discharge, otherwise known as the compression ratio, is a check that we carry out during the maintenance. The pressure and temperature is higher on the discharge valves, so more stress is exerted on to them. Therefore, they have a reduced lifespan by comparison to suction valves.

Top Dead Centre

The piston needs to come as close as possible to the cylinder head to create the largest amount of compressed refrigerant. This is called the clearance space which is usually less than 0.5 mm.

Discharge Header Safety Spring

This spring is fitted into the cylinder head and allows the valve gear to lift when:
• Liquid refrigerant slugs back to the compressor due to poor heat exchange in the evaporator.
• An oil slugging condition occurs.
• Water is drawn around the system from a burst condenser or evaporator.
As a compressor cannot compress a liquid, the valve gear lifting prevents an expensive compressor smash up from occurring.

0161 370 7193

service@maximuschillers.com

Contact Form

Reciprocating Chiller Compressor Maintenance of Shaft Seal

The compressors in the photo are open drive. Each has a shaft seal which has two, mirror finish rubbing surfaces. One seal turns with the crankshaft and the other is stationary. We check the amount of oil that is seeping from the shaft seal on every visit. When we notice that the level in the oil bottle is too high, we arrange a visit to change the shaft seal. This can be done without disruption to your process, as the other compressors can be left running while we carry out the work.

Reciprocating Chiller Compressor Maintenance of Drives

This kind of compressor is usually driven by an in line electric motor, as in the photo. It can also be driven by ‘v’ belts from an electric motor which is located to the side of the compressor. The ‘v’ belts are checked during the visit to see if there are any cracks on the inside working surface. We replace these with the pre ordered spares that are on site at no extra charge. They are then re tensioned according to standard industry guidelines.

Reciprocating Chiller Compressor Maintenance of Crankcase

This is a cast iron housing that all of the above components fit into. It provides the necessary support and strength for the compressor to operate at its high temperatures and pressures. The crankcase heater keeps the oil at operating temperature during the off cycles. It is usually a bore type which pushes into a hole in the casting. We check for the correct operation of the crankcase heaters and replace them where necessary. This is another spare that is kept on site, so that a return visit is not needed.

Service Ports

These bolt on to the compressor crankcase. They can be positioned in various directions, depending on which way the suction and discharge pipes go. The compressor can be valved off when it is being worked on. These ports are used by engineers to attach their gauges during the maintenance. On each visit, we check the calibration of the system pressure transducers by checking them against our gauges.

Reciprocating Chiller Compressor Maintenance of Oil Pump

This is a gear type pump which is fitted to the end of the compressor crankshaft. The pump sucks the oil through a filter from the sump of the compressor. Then, it is discharged from the pump, down the crankshaft passageways to the connecting rods. From here it travels up the con rod passageways and out through the pistons to the cylinder liners. Here, it provides the essential lubrication between the pistons and the liners. According to the maintenance schedule, we periodically change the oil filters to ensure the optimum running conditions of your compressors.

MAXIMUS ADVANTAGE™

If a compressor smash up occurs and the compressor is found to be obsolete- don’t worry. We can adapt the compressor mountings and the pipework for a different compressor. This is part of what we call The MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere.

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Chiller Controls

Scroll Chiller Compressor Maintenance

Chiller Condensers

Centrifugal Chiller Compressor Maintenance

To read more about reciprocating chiller compressors hit the Tag at the top of the page.

Read more about reciprocating compressors on Wikipedia | Click Here

 


Grey centrifugal chiller compressor being maintained

Centrifugal Chiller Compressor Maintenance

Centrifugal chiller compressor maintenance keeps your critical plant up and running and your customers happy. The work can be scheduled to be carried out during factory shutdown, so as not to disrupt your production. We can also carry out this work to your compressors while the factory is in production. This is achieved by isolating the compressor that needs to be worked on when it is in an off cycle. The compressors on remaining machines can carry on running.

Tasks during Centrifugal Chiller Compressor Maintenance

Here are some of the tasks that we carry out…

Oil Changes

The oil becomes dirty over time by picking up contaminants that have formed in the system. Two of these contaminants are…

Acid

Compressor discharge is the hottest part of the refrigerant cycle. Acid can be formed from the refrigerant in this part of the system.

Refrigerant Types

A popular refrigerant for centrifs is R134a. Because it consists only of one kind of refrigerant, it does not fractionalise into different component refrigerants. This would be no good for a flooded system because one or more of the refrigerants would end up in the bottom of the evaporator and condenser. The remaining refrigerant would circulate and the whole plant would not function as it should. Refrigerants popular for other kinds of system are zeotropic HFC refrigerants. This means that the different component refrigerants have different boiling points- R407c is a good example.

Metal

White metal from the compressor and copper from the heat exchangers end up in the oil. They will eventually be caught by the system oil filters…

Oil Filter Change

After completing the above, now is a good time to change the filter as the compressor is valved off and has been broken into. It is also when an oil sample is taken depending on the schedule…

Oil Samples during Centrifugal Chiller Compressor Maintenance

Our oil samples are transported using our specialist kits which include the bottles and labels. This saves mix ups in our laboratory during the analysis.

Leak Rectification

The drawback of carrying out the above are leaks because the pressure has been pumped out of the compressor into another part of the system. The ‘o’ rings and shaft seal can now leak, this kind of failure can be rectified whilst still on site by the knowledge of our engineers.

0161 370 7193

service@maximuschillers.com

Contact Form

Oil Pre Lubrication

When the compressor starts, the oil pressure is built up first using an oil pump. This is so the internal components such as the high and low speed shaft are properly oiled before they start to rotate. They can run at 10,000 RPM and are very expensive to replace. Therefore, we check the oil pressure gauges and the system controls to ensure optimum ‘pre lubing’ of your compressors.

Volumetric Efficiency

The ratio between the volume actually compressed and the theoretical volume derived from compressor design calculations. This kind of compressor has a lower volumetric efficiency than positive displacement compressors. It is because the refrigerant is compressed off the tip of the rotating impellor or impellors. The refrigerant moves outwards in a circular path due to centrifugal force. A centrif more than makes up for this lower volumetric efficiency by the high mass and volume of the refrigerant that it circulates around the system.

Design 

The refrigerant is sucked from the evaporator into the centre of the impellor which is a disc of radial blades positioned to direct the refrigerant outwards. Due to the low differential of pressure, multiple stages of impellors are often arranged in series with the discharge being directed onto the suction of the next impellor. This is simple in design with less moving parts than some other compressor types. Modern centrifs can have magnetic, levitating bearings and so remove the need for oil in the system altogether. The faster the speed, the better the efficiency- so high speed rotation of the impellor is achieved at full load. The compressed refrigerant is discharged into the condenser.

0161 370 7193

service@maximuschillers.com

Contact Form

Electric Drive Centrifugal Chiller Compressor Maintenance

Most modern centrifs are driven by variable speed drives. This is for efficiency as the load can be exactly matched. Another reason for this is to soft start the compressor. 415v and 3.3kv are popular volt inputs, although other voltages can be made available by the onsite transformer.

Open

An open drive electric motor is the most popular design. It has the drawback, however, of needing a shaft seal which needs to be replaced at periodic intervals. This shaft seal is also prone to leaking refrigerant and oil.

Semi Hermetic

The photo is of a semi hermetic design of this compressor type. The motor is contained inside the suction housing and so has the benefit of being cooled by the refrigerant. No shaft seal is needed and therefore it has none of the associated maintenance drawbacks.

Steam Drive Centrifugal Chiller Compressor Maintenance

On oil rigs there can be an abundant supply of steam that can be used to drive the compressor. It is often used on multi stage compressors which are used for the liquefaction of natural gas. The steam goes through a turbine which is connected to a shaft- this drives the impellors. The steam flow and pressure can be tested and adjusted during the visit.

Woops Something Went Wrong

When you suffer a centrifugal compressor failure- don’t worry. You are in safe hands with the team here at Maximus Chillers. We have a team who can get the compressor out and lift it to the workshop on site, or transport it to our Head Office. We have another team who are experts in the remanufacturing of this kind of compressor. A fast supply chain is in place for delivery of the internal moving parts, gaskets and bearings. We are so confident that you will be happy with us- we offer a 12 month warranty on all of our compressor rebuilds.

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Chiller Controls

Scroll Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

To read more about centrifugal chiller compressors hit the Tag at the top of the page.

Read more about centrifugal compressors on The Engineering Mindset | Click Here

 


6 green Bitzer scroll compressors being maintained in a chiller

Scroll Chiller Compressor Maintenance

Here at Maximus Chillers, we carry out scroll chiller compressor maintenance to extend the lifespan and reduce downtime to your critical plant. This planning ahead is central to how we do things- we resolve small problems before they become big problems. Having the capability to do anything is part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere.

How they Work

The refrigerant vapour passes in between two scrolls (spirals) One of these is fixed, the other orbits backwards and forwards against the fixed scroll using a swing link. This creates a series of crescent shaped gas pockets in between the scrolls. These gas pockets get smaller in size as the refrigerant travels from the suction at the edge, down the spirals to the discharge at the centre. It then leaves downwards through a port. There are check valves to prevent back feeding of refrigerant during off cycles when other compressors on the same system are still running.

Advantages

There are several gas pockets occurring at any one time through the scroll, therefore giving a smooth and continuous compression cycle. Other advantages are low internal friction resulting in a quiet operation and low vibration levels. These low vibration levels help to lower the occurrence of leaks around the compressor.

Oil Level during Scroll Chiller Compressor Maintenance

The correct oil level is noted on our detailed Tick Sheets for all of the compressors. This record helps with the diagnosis when things start to go wrong. We can look for a pattern where the level starts to drop off in the compressors on a particular system, then look at the other readings which may be the cause.

Oil Samples during Scroll Chiller Compressor Maintenance

At periodic intervals, we take oil samples which we analyse in our laboratory at Head Office in Droylsden. We look for white metal, coloured metal, refrigerant composition, acid and sludge. This means that we can notice, then resolve system issues before a costly compressor failure occurs.

Oil Changes during Scroll Chiller Compressor Maintenance

This kind of compressor is fitted with a service port for the draining and filling of oil. The correct procedure is followed due to system pressure being present inside. We then carry out the oil changes using our specialist oil handling tools. Our skilled engineers carry the correct PPE for the work being carried out. We also we provide Risk Assessment Method Statements for each job.

0161 370 7193

service@maximuschillers.com

Contact Form

Crank Case Heaters

In the photo you can see the silver band of the crank case heaters at the bottom of the compressors. They keep the oil at the required temperature so as to not cause compressor wear on start up. The heaters also have the effect of ensuring that the refrigerant cannot condense into liquid during cold weather. As a compressor cannot compress a liquid, compressor failure would occur. A normally closed contact on the delta compressor starter contactor usually runs the heater: it drops out when the compressor starts. The function of all of these heaters is checked on each maintenance visit.

Discharge Temperature

It is critical that the discharge temperature is not too high, as this is the cause of the refrigerant breaking down into acid and sludge as previously mentioned. The acid rots the insulation on the copper windings inside the compressor. When this has occurred, an electrical failure will result in the compressor, causing the fuses to blow and a fault condition on the chiller. Compressor swap out is the cure which is expensive and inconvenient. We take the discharge temperature readings during the maintenance so as to fault find the cause.

Suction Pressure

Adequate suction pressure is needed to ensure good oil return to the compressor and prevent low pressure trips. As the refrigerant entrains the oil around the system, a good mass flow rate is needed, or the oil will just ‘pool’ in the bottom of the evaporator. Poor oil return will result in a seized compressor. Therefore, particular attention is taken to the low pressure gauge by our engineers. System adjustments or recommendations are made to ensure the seamless operation of your plant. If system overhaul is required, a Quote will be submitted at the end of the visit.

0161 370 7193

service@maximuschillers.com

Contact Form

Compressor Holding Down Bolts

There are usually four of these on each compressor. They fit though a steel sleeve which, in turn, fits through a rubber mount. The whole assembly is bolted into the frame of the chiller. The function is to securely hold the compressor in place and to dissipate vibration. We check the tightness is correct with our torque wrenches and change the rubbers periodically. A compressor rattling around uncontrollably, especially during start up and stopping causes catastrophic leaks around the compressor. This usually leads to the whole, or the most part of the refrigerant charge being lost to atmosphere.

Motor Protection Module

A resistance sensor embedded in the compressor windings plugs into this module on the S1 and S2 terminals. The fault feedback to the controls is on the M1 and M2 terminals. The power supply to the module is on the L and N terminals. When the windings start to get hot, the module detects this after a pre determined level of resistance is reached. The M2 terminal opens and volts drop out to the relay board, then a lower volt control signal drops out to the controller. We check the sensor resistance and compare it to a chart to ensure it is within the allowable range on each visit.

Wire Tightening during Scroll Chiller Compressor Maintenance

We waggle the motor connectors and check for any cracking to the wires which may lead to an earth sort out. We tighten the wiring on the compressor starter contactors and check the condition of the contactor contacts. These become ‘splattered’ causing an uneven amount of amps to the compressor. This volt drop causes the contactors to fail and will eventually cause compressor motor failure. We change the contactor contacts from our range of parts at Head Office.

People also like this page:
Centrifugal Compressor Remanufacturing

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Chiller Controls

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

To read more about scroll chiller compressors hit the Tag at the top of the page.

Read more about scroll compressors on Wikipedia | Click Here


Large chiller, refrigerant cylinder, brazing equipment and tools during chiller service company visit

Chiller Service Company Visit

A typical rainy day in the North West, perfect for a chiller service company visit.

News Article No.11

Electrical Faults during Chiller Service Company Visit

This was a return visit to do a refrigerant leak, but the customer alerted our engineer’s attention to an electrical fault. System 2 was found to be locked out in fault on the recent maintenance visit, but now System 1 was being held off too. The fault message on the controller was High Pressure. The controller sends a 240v fault feedback signal, through the high pressure switch which returns to the controller. Our engineer had a look at the wiring diagram to find the number on the terminal strip and checked it out with his multimeter. As he suspected, there were volts going out, but not coming back. He removed the side panel for system 1 and found the switch on the discharge pipe. It was the type that has a red button on the top. When he pressed it, there was a click and volts returned to the controller.

Alarm Reset during Chiller Company Service Visit

He interrogated the Carel controller and followed the reset procedure. The controls went through a timer and then the start sequence was initiated.

Run Testing during Chiller Company Service Visit

After the first scroll compressor started, the head pressure started to build up, but the condenser fans did not start. The on board high pressure gauge carried on rising until the high pressure switch was tripped again.

Head Pressure Control

A transducer on the discharge is used by the controller to sense the pressure in the condenser. When our engineer looked for this in the controller, it was found to be reading wrong by a considerable amount. There is a facility to enter a password and recalibrate the transducer, but this only allows for a small adjustment.

Test Instrument

Our engineers carry various kinds of test instruments which can be used to give a temporary false reading to the controller. This gets the customer up and running and back in production whilst a new transducer is ordered and sent to site.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Company Service Low Pressure Visit

Now on with the job to resolve the low pressure issue with the chiller.

Refrigerant Pump Out

Our engineer lifted the liquid line solenoid valve and decanted the remaining refrigerant into a vessel using his recovery unit. He only got out 7kg of a charge of 36kg.

Leak Testing during Chiller Company Service Visit

We use nitrogen for the leak testing as it is an inert gas that will not cause problems with the refrigerant system. There was a sign of the leak in between the steel frame at the middle of the condenser and the condenser tubes. We always strip the chiller down and leak test the entire system though. This is so that the job does not end up going round in circles. At first the leak could not be found, so the pressure was built up in stages, taking into account industry recommended guidelines for a chiller. Sure enough the leak was where it was suspected to be. The occurrence of this kind of leak can be reduced with the use of vibration eliminators.

Brazing during Chiller Company Service Visit

The location of the leak was reported to the maintenance engineer onsite and a hot work permit obtained. The equipment we use is tested at regular intervals to be safe and in good working order. A half hour fire watch was stipulated in the permit, along with the removal of combustible materials from the work location. Correct PPE being donned, he brazed the leak to the required industry standards.

F-gas Pressure Test

A chiller has a different pressure test procedure to other systems, so our engineer built the pressure up according to industry standards, then recorded it on his pressure test certificate. After the required time had elapsed, he rechecked the readings which were found to be satisfactory.

Vac Pump

Each of our engineers carries a state of the art 10 cfm vacuum pump to speed up the dehydration process. We use high quality Torr gauges too, so as to get an accurate pressure reading. A good read back was achieved at the end of the process.

Recharge and Run Test

After the refrigerant recharge was carried out, a satisfactory run test was achieved.

0161 370 7193

service@maximuschillers.com

Contact Form

Refrigerant Economizers

This particular chiller uses an economizer to further subcool the refrigerant. Chiller designers have worked out that the end user can save a considerable amount of money over 10 years if these components are used. After the subcooled liquid refrigerant leaves the condenser, it goes through a plate heat exchanger. Some of this refrigerant, however, is diverted through a thermostatic expansion valve, to the other side of this plate heat exchanger. Further subcooling occurring through the plates.

Expansion Valve

The refrigerant drops in pressure as it goes through the expansion valve. A bulb is fitted to the suction pipe on the outlet of the heat exchanger. The bulb has to be at the correct 'o clock position as oil insulation will affect the operation of the valve. A capillary tube connects the bulb to the valve. Inside the bulb, the same kind of refrigerant that is running in the system is present in its liquid state. As the temperature rises in the suction pipe, this refrigerant boils off, adding pressure into the capillary tube. This added pressure forces the power element down on the valve body and a needle forces the valve open.

Flash Gas

Imagine if the refrigerant was not subcooled at all. It would be around its saturation point with a lot of it flashing off into its vapour phase. Not good when you have warm water coming back from the process. The refrigerant would not absorb very much latent heat into the refrigerant system.

Efficiency

Imagine, on the other hand, the economizer which is fitted to this chiller. Now we have a good proportion of refrigerant in its liquid phase, on the low side of the system, with a minimum amount of flash gas. The warm process water has more chance to cool and the refrigerant absorbs a lot more latent heat. The chiller achieves set point easier and therefore saves a considerable amount of electricity. With this further subcooling monitored for a while, time for a signature from the customer and another job well done!

Related Articles:
Chilling Plant Service

Chilled Water System EEV Service

Water System Service of Evaporator

HFC Chiller Service

Process Chiller Vacuum Service

Chiller Breakdown

Chiller Fault Finding & Diagnosis

To read more about chiller electrical faults hit the Tag at the top of the page.

Read more about F-gas leak checking at Refcom | Click Here


Carel controller showing R134a refrigerant readings during preventative chiller maintenance

Preventative Chiller Maintenance

We at Maximus Chillers will optimise the efficiency and take years off the life of your plant with preventative chiller maintenance.

News Article No.9

Control Panels

The first thing our engineers check at the start of the maintenance is the control panel of the chiller. In here he checks:

Programmable Logic Controller

Alarm History

The alarm history is analysed in sequential order to build up a picture of the last maintenance period.

Settings and Timers

The various levels of password accessed menus are checked and adjusted for efficiency and to eliminate any spurious trips on the running of the chiller.

Compressor Run Hours

We make a note of the compressor run hours on our detailed Tick Sheet. Bearings on centrifugal compressors and valve gear on reciprocating compressors are changed at pre prescribed intervals as defined by the manufacturer. This is to prevent an expensive failure and the resulting remanufacturing of the compressor.

Preventative Chiller Maintenance of Electrical Safety Devices

Fuses

Each one of these is popped from its holder and the continuity checked with a multimeter. This is maintenance the right way round, instead of run testing and following the fault back to the fuse.

Circuit Breakers

Each of the breakers is tested to ensure it will function correctly when it needs to.

Residual Current Device

RCDs work by detecting current leakage to earth. It monitors the difference between the live and neutral poles. As above these are tested on each visit.

Preventative Chiller Maintenance of Refrigerant Safety Switches

High Pressure Switches

The settings and dead band (the difference in pressure between cut out and cut in) are checked and adjusted on each visit. Sometimes due to malfunctioning controls or condenser condition, fans can be manually left off or can be forced on. Not the best running condition, but we will keep you up and running until we send out the new parts. Where this is a bespoke manufactured condenser, we have the best lead time available.

Low Pressure Switches

As above, the low pressure switches are checked and adjusted as need be. The seasonal and varying load conditions affect the saturation point of the refrigerant in the evaporator. This can cause untimely trip outs when the plant is otherwise running in optimum efficiency.

0161 370 7193

service@maximuschillers.com

Contact Form

Coefficient of Performance during Preventative Chiller Maintenance

The coefficient of performance is the cooling effect compared with the electrical energy supplied to the chiller. It is represented in a ratio, for example 6:1. That is six times more cooling effect compared with the electricity supplied. The higher the cooling effect relative to electricity supplied, the lower the cost in electricity. The ratio is often divided by 1 to show as just a number- in this example 6. The cooling effect is measured in kj/kg and the electrical supply is represented in kw/h.

Latent Heat 

A chiller system would have a COP of less than 1 if not for latent heat. Exploiting this hidden heat when both evaporating and condensing the refrigerant is one of the founding principles of the basic refrigeration cycle. It takes a lot of heat added to the system to get the refrigerant to boil, then the same amount of heat is rejected from the condenser in the liquification of the refrigerant.

System Efficiency

A lot of basic things routinely drag down the efficiency of a chiller system. Just with the effect of our engineer attending site to carry out the maintenance- he will keep the COP optimised. Here are some of the system checks and procedures he carries out:

Superheat

When a compressor never goes off due to refrigerant shortage, there is a dramatic increase in electricity consumption. Also, the system will not have very much cooling effect. Continuing like this will cost more money and achieve little.

Subcooling

Basic condenser maintenance will improve the subcooling values. These readings will be taken at various load and ambient conditions at different times of the year. This is so we can build up an understanding of the plant. We carry a wide range of chemicals for the maintenance of your condenser. These chemicals are carefully selected so that they do not damage the condenser causing leaks. Condenser fans also cause a poor COP:

0161 370 7193

service@maximuschillers.com

Contact Form

Preventative Chiller Maintenance and Condenser Fans 

Basic Design

With some basic chiller designs, the chiller condenser fans come on and off forwards and backwards at different pressures. This means that when other fans have failed, or are stuck going backwards- the one on the end comes on with the higher pressure then blows to earth. This is due to the ingress of water in the year it did not run.

Refrigerant Leaks

The above design means that there are fluctuating pressures in the condenser. This causes continuous expanding and contracting of the copper tubes. These copper tubes rub against the steel frame which is holding them in place- causing reoccurring leaks. Another reason for repeated leaks on the condenser is the vibration issue of the fans banging on and off. Add into this equation a cheap, flimsy frame that develops its own resonance- you then have an un ending problem.

Preventative Chiller Maintenance with Fan Speed Controllers 

Part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere is that we can source any fan speed controller from our fast supply chain. This remedies the problem, as fan speed controllers bring all the fans on together at different speeds. Therefore, extending the lifespan of the fan and maintaining an efficient coefficient of performance.

Axial Fans

Most air cooled chillers use axial fans. They suck the air through the condenser and reject it upwards and away from the chiller. Ducts are often fitted to help this process. Scaffolding is erected to provide safe access to engineers.

Radial Fans

Radial fans are also called centrifugal fans or blowers. They are very popular in server rooms where air is blown down into a mezzanine floor and up through the racks. They are also used outside in chillers where they blow out and away from the chiller. They are usually driven by belts which require regular inspection and maintenance.

0161 370 7193

service@maximuschillers.com

Contact Form

Preventative Chiller Maintenance and R134a Refrigerant

In the photo, the controller shows R134a refrigerant and the 8.3°C of superheat as calculated by the program. This superheat may look at first to be okay, but when considering the compressor loading and expansion valve- it points towards a system issue. Our engineers diagnose if the issue is related to a component or a refrigerant shortage.

Characteristics

HFC refrigerant which has a chemical name of Tetrafluoroethane or CF3CH2F. It has low toxicity which is good for the health and safety or our engineers. It is not combustible, but other chemicals are made as a result of a fire. It is non corrosive too, which extends the lifespan of the pipework and components around the system.

Centrifugal Drop In

This refrigerant is widely used as a replacement for HCFCs, such as, R22 used in centrifugal chillers. It is only one fluid, where as the other popular HFC refrigerants are blends. These blends fractionalize in a flooded condenser or evaporator. That is to say: one or two of the refrigerants in the blend separate out and do not continue their cycle around the system. The chiller now has the wrong refrigerant circulating around the system for the application temperature. Extreme running faults follow, such as, ice on the compressor, suction pipe and expansion pipe. This is as a result of the refrigerant pressures and temperatures being outside of nominal conditions.

Global Warming Potential

A global warming potential of 1430 is considered to be high. Therefore, the refrigerant is being phased down to 21% by 2030 in line with F-gas guidelines. These guidelines are in accordance with the European Union and the Kyoto Protocol. Because of the regulations for the handling of fluorinated gas, our engineers attend college to learn how to decant the refrigerant safely. We then ship it to the recycling centre for disposal. A waste carrier note being completed each time to track the refrigerant from dispatch to disposal. Finally, F-gas leak tests are carried out and recorded on each visit. Maximus Chillers completes the picture.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Glycol Chiller Maintenance

Chilling Plant Maintenance

To read more about chiller control panels hit the Tag at the top of the page.

To watch a video about chiller efficiency and the coefficient of performance | Click Here


Large air cooled brown chiller with test equipment during planned preventative chiller maintenance

Planned Preventative Chiller Maintenance

Featuring planned preventative chiller maintenance, which is part of a series of longer, in depth articles.

News Article No.2

This time concentrating on the checks, adjustments and diagnosis our engineer carries out while on site. We can extend the life of your plant and reduce energy costs- just with the effect of our maintenance. As well as completing a detailed checklist, which is sent to your office in PDF form, our engineer carries out extensive F-gas leak testing.

Planned Preventative Maintenance of Chiller Controls

The first part of the maintenance is carried out to the controls of the redundant systems. This is because all the pressures and temperatures should be reading the same. If not, this is an opportunity for:

Sensor Calibration

Before calibrating a sensor that is reading out, our engineer carries out a diagnosis to assess the serviceability of the sensor. With NTP (negative temperature coefficient) and PTC (positive temperature coefficient) sensors, the resistance is taken at a given temperature, which is then compared with a chart. With pressure transducers the 0-5vdc feedback signal is analysed to see if it is within the allowable tolerance. Once this diagnosis is complete and the sensor is deemed to be in good working order, our engineer will then calibrate the sensor. A password is entered into the PLC (programmable logic controller) to gain access to the service menu. From here, he can select the particular sensor, then offset it by the required amount. A lot of controls are not linear, that is to say, a sensor reading 2°C high being reduced by 2°C may not calibrate correctly. An amount of trial and error is often required. Also, monitoring the sensor against a digital thermometer at various temperatures is carried out.

Program Settings and Timers

Each program setting and timer in the various menu levels is checked against the previous maintenance checklist. Sometimes these are changed accidentally by the onsite engineer when looking for something else- it is easily done.

Planned Preventative Chiller Maintenance of Safety Chain

Each component on the safety chain is manually tripped or the fault condition is replicated to cause the device to trip. This part of the PPM (planned preventative maintenance) is essential to ensure the safety chain protects the chiller during a fault condition. Compressor failure or evaporator freeze up can occur with dramatic cost implications. We routinely prevent small problems, such as a faulty switch, becoming big problems.

Planned Preventative Chiller Maintenance of Wiring

Each wire on the chiller is checked for tightness including the fans (on air cooled chillers) This includes the compressor motor connectors and compressor contactor contacts. Loose line wiring will cause breaker and fuse faults. Loose control wiring will cause error messages and chiller faults. This is a call out in between visits that can be eliminated. With the effect of our maintenance, any chiller becomes more reliable and has lower energy costs.

0161 370 7193

service@maximuschillers.com

Contact Form

After the above stop checks are carried out, system run checks are carried out:

Superheat

Using R134a refrigerant as an example, the refrigerant pressure will be 1.9 bar at 0°C This refrigerant is in the HFC (hydrofluorocarbon) family- a commonly used refrigerant. If the refrigerant vapour returning to the compressor is excessively superheated- this is a sign of system issues. Here are some of the causes for a high superheat condition:

Refrigerant Shortage

Not enough latent heat being absorbed by the refrigerant in the evaporator. This allows the refrigerant to carry on superheating with the available heat load. Refrigerant leak testing is required to identify any leaks. The history of maintenance checklists can be consulted to see if the issue has been deteriorating over several visits.

Expansion Valve Failure

A thermostatic expansion valve operates with a higher superheat value, whereby an electronic expansion valve has a much closer control. In either case, our engineer will be accustomed to the nominal readings.

Thermostatic Expansion Valves

This type of valve is operated with a power element and orifice. A bulb is clamped onto the suction pipe which is connected to the power element via a capillary tube. The power element is pressurised with the same refrigerant as in the chiller. Some of this refrigerant is in its liquid phase, so with an increase in temperature, there is a corresponding increase in pressure. This pressure acts against the diaphragm and so pushes the orifice open. The orifice allows more refrigerant through the valve. When load conditions change and there is a reduction in heat load, the reverse happens- the orifice closes and reduces the amount of refrigerant through the valve. When the power element looses its charge- the orifice shuts down causing a high superheat condition. A low pressure trip out can also occur.

Electronic Expansion Valves

This type of valve uses sensors on the liquid and vapour sides of the evaporator, or a transducer and sensor vapour side of the evaporator. This is so the program can work out the superheat value. If the sensors are faulty, the valve will not operate correctly and a high superheat condition may occur. If the step motor or driver have failed- replacement parts are required.

0161 370 7193

service@maximuschillers.com

Contact Form

Subcooling

This is the measurement of the refrigerant condition in the condenser. Air cooled condensers are particularly popular in the UK as the ambient conditions make them very efficient. Shell and tube condensers are used on lager systems- these are cooled down using a water tower. When there is a refrigerant shortage, the liquid does not stay in the condenser long enough for it to subcool sufficiently. Some of the refrigerant stays in its vapour phase. With not enough latent being rejected in the condenser- the chiller’s COP (coefficient of performance) will be reduced. This means high energy consumption relative to the refrigeration effect of the chiller. This condition can be remedied with a scheduled visit from one of our team.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Glycol Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

To read more about chiller control systems hit the Tag at the top of the page.

For further reading on the subject of preventive maintenance on Wikipedia | Click Here


Translate