Chiller Controls

Open chiller controls panel showing PLC, relays, contactors and wiring

Chiller Controls

Chiller controls can be remotely operated and monitored, but in this article, we will be looking at chillers operating in local.

Each chiller has a panel where the lead or the lag chiller can be switched from. They have N+1 redundancy built in, so one of two chillers will normally be in standby with the other one running. The chillers in the photo are equipped with kilowatt hour meters because the customer wants to monitor their efficiency. He has targets to meet and wants to gauge the effect that our maintenance has in reducing his energy costs.

Condenser Pressure

The condenser pressure control is external and stand alone from the panel.

Transducer

A transducer is fitted to the discharge pipe near to the compressor. This gives a 0 to 5vdc control signal to the fan speed controller which is bolted to the frame. There is a minimum and a maximum value on the transducer, so the FSC is programmed to work out the pressure from the voltage.

Fan Speed Controller

415v on three phases are the input to the FSC. It uses solid state thyristors to regulate the output to the fans. This is according to the demand received by the transducer. Solid state means that all the parts are electronic with no moving parts. Fan speed controllers are really good at extending the life of the fans. This is because all of the fans operate together- smoothly and reliably.

Chiller Controls Digital Inputs

There are three essential digital inputs to the controls of any chiller. All of them have a volt signal out to them, which returns back to the panel. If there is a fault- the volts drop out.

LP Switch

This protects the chiller from a low pressure condition. Compressor and evaporator failure would result, so this device is set below the running pressure of the system, but high enough to offer protection.

HP Switch

If the head pressure control mentioned above were to fail, this device would save the chiller from damage from excessive pressure in the system. Components or the pressure relief valve can blow causing a catastrophic refrigerant leak.

Flow Switch

This device detects a lack of flow in the water system. Serious system failure would result if this part is not maintained properly. It needs to be periodically tested and adjusted at regular intervals.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Controls Analogue Inputs

The essential analogue inputs on a chiller are the Water In and the Water Out sensors. These are usually NTC (negative temperature coefficient) that is to say: if you hold one in between your fingers and warm it up- the resistance will start to drop off. They usually read in kilo ohms which can be read on a standard multi meter. The program looks at these two sensors and using an algorithm, it calculates the loading requirement of the compressor. They can read incorrectly, so a sensor offset function is available in the software for adjustment. This is just one of the many checks and procedures that we carry out during our maintenance visit.

Chiller Controls Relays

In the photo you can see wires from the various devices around the chiller, wired into a row of relays. These, in turn, are wired into the white relay board at the top. This relay board has several expansion boards linked into it which are held together with an electrical ribbon. Next, the relay board is wired into the PLC... 

Chiller Controls PLC

The reason for these steps in between a device and the PLC is for protection. Sensitive electrical components can be blown due to an earth shortage. At each stage there is a volt drop from 240v to 24v and then to 5vdc.The programmable logic controller is the nerve centre of the chiller. This is where all the inputs go to and where all the digital outputs are sent from. The controller on this chiller is Beijer Electronics- it comes blank from the factory. User keys to operate the chiller are positioned below the display. It can be programmed to run most chillers and indeed it is often seen in factories running anything. A laptop plugs into it and the software for the chiller is uploaded. On one visit, we found a fault with this controller. We bubble wrapped it and took it to our electronics laboratory at Head Office. The issue was easy to resolve- it was just dust tracking across the back of the PCB and so corrupting the program.

0161 370 7193

service@maximuschillers.com

Contact Form

Chiller Controls Digital Outputs

The main digital outputs on this chiller are:

Compressor Run Signal

240v is sent to the compressor starter contactors. There are three: Star (lower amps for a soft start) then a timer switches over to Delta (higher amps for a more powerful running of the compressor) On the other end of the compressor windings is the Line contactor. This contactor runs with both the Star and the Delta contactors.

Float Valve

This is a camber where the level of refrigerant which is coming in from the condenser is detected. The level is transmitted to the PLC, where the program sends a signal to the expansion valve. It opens to the correct degree according to the load on the chiller.

Slide Valve

The compressor can run at 0% with the slide valve shut. When load is sensed from the Water In and Water Out sensors by the controller- the slide valve opens up. The position of the slide valve is detected by a potentiometer. This is calibrated from a minimum to a maximum position. The signal is 4-20 mA which the controller translates into the position of the slide valve.

MAXIMUS ADVANTAGE™

Whatever the problem with the controls, we can find a solution to resolve it. With years of industry experience and a fast supply chain, we offer a service that is second to none. Being able to retrofit is part of what we call the MAXIMUS ADVANTAGE™ Any Chiller- Any Problem- Any Part- Any Refrigerant- Anywhere.

Related Articles:
Chiller Parts Supplier

Chiller Compressors

Air Cooled Chiller Condenser Maintenance

Shell & Tube Evaporator Maintenance

Screw Chiller Compressor Maintenance

Scroll Chiller Compressor Maintenance

Centrifugal Chiller Compressor Maintenance

Chiller Condensers

Reciprocating Chiller Compressor Maintenance

Chiller Controls Company

To read more about chiller control systems hit the Tag at the top of the page.

Read more about Chiller Control Basics on the Engineering Mindset | Click Here


Large white chiller being inspected to compose a chiller maintenance schedule

Chiller Maintenance Schedule

The chiller maintenance schedule in essence is as follows:

  • What is the plant? According to the asset list for that particular contract.
  • What are we going to do with it? The checks, procedures and diagnosis in the pursuit of the maintenance of the chillers.
  • How often? The periodic maintenance schedule defining the required interval between visits to ensure seamless operation of the plant.

News Article No.5

Chiller N+1

N+1 is intrinsic in the development of a chiller maintenance schedule. N+1 means the amount of cooling required + the same amount again in parallel. It can also be represented as 2N. Two water system pumps are a good example: where the pipework splits in two- one pipe for each pump. When a pump fails, the redundant pump comes online. Chillers are arranged in parallel, in this way, on the water system. This redundancy allows for a stress free maintenance of the plant. The failed system can be rectified and brought back online while the redundant system takes the load.

Intervals of Chiller Maintenance Schedule

The intervals in the contract are influenced by the redundancy of the chillers on site. The less run hours the compressor does, the less maintenance is required. We at Maximus Chillers can tailor make a maintenance schedule exactly to your needs by looking at how much the chillers are used and how hard they work.

Load affecting Chiller Maintenance Schedule

For some applications, the chiller operates under a high load condition all the time, with a redundant system in standby. On other applications, the chiller works in minimal load conditions. Regardless of the load conditions, the chiller is critical to the cooling of buildings or for an industrial process.

Lead/ Lag of Chiller Maintenance Schedule 

An important thing to remember is to balance compressor run hours and bearing wear by rotating the lead/ lag duty of the chillers. This can usually be done in the in the sequencer (if fitted) by changing a program setting. Otherwise, the switchover controls can be changed on the off/hand/run toggle switches. Where manual changeover is required, the onsite engineers are usually conversant with the procedure concerning the water system pumps, valves and controls. During the maintenance, the stop checks can be carried out on the redundant system, while the run checks are carried out on the system which is online.

Chiller Maintenance Schedule for Recip Compressors

Recip compressors require a log of the compressor run hours. This is because the valves and bearings should be changed at pre prescribed intervals as laid down by the schedule. Particularly important to reciprocating compressors are regular oil changes and oil sampling- a small change in the result of an oil sample can prevent a serious compressor smash up. A check list including the model number and serial number is completed on each visit and kept in a file on site. This file can be consulted during diagnosis and maintenance to decide on the beast way forward with an on going issue.

Chiller Maintenance Schedule for Air Cooled Condensers

Air cooled condensers can often be looked after by the onsite engineers in between maintenance visits. Just a quick brush down every few months is usually all it takes. Where the environment lends to a type of contaminant being collected on the condenser coils, an effective chemical is selected from our stores and used on the coil. Where there is an issue with the serviceability of the condenser, we can put together a plan to keep on top of it. We can even retrofit a new condenser- it’s what we call the MAXIMUS ADVANTAGE™

0161 370 7193

service@maximuschillers.com

Contact Form

Shell and Tube Evaporators

The shell is made from a heavy steel sheet rolled into a circle. The seam is welded together to form a cylinder. The tubes are pushed though the tube holders which are made from steel and are welded into the shell of the evaporator. The tubes are copper because of its good thermodynamic properties.

Direct Expansion Evaporators

Direct expansion is achieved in an evaporator with a thermostatic, or electronic expansion valve. The refrigerant enters the valve from the condenser as a high pressure, hot liquid. The pressure drop on the evaporator side of the valve makes the refrigerant flash off into a cold, saturation point liquid and vapour mix. The liquid boils off, absorbing latent heat through the inside of the copper tubes. On the outside of the copper tubes is the return water from the process, or the cooling of buildings.

The parts of the maintenance schedule that relate to DX evaporators are:

Oil Pooling

The inside of the tubes are in the clean environment of the fridge system. This means they do not become fouled. A tube insulating issue, however, can be caused on the inside by oil. If there are issues with the oil return system, the oil can pool in the evaporator. A low refrigerant charge can have the same effect. Written into the maintenance schedule are manual oil return and oil draining visits. During these visits, the monitoring of the refrigerant charge is also carried out.

Sensor Location

If a sensor is not located in its pocket correctly, or without sufficient heat transfer paste- it will read incorrectly back to the electronic expansion valve driver. This will cause the expansion valve to malfunction.

Pressurisation Units

A full maintenance of the pressurisation unit is carried out. This includes the pumps, controls and program adjustments as required. Incorrect pressure in the water system will cause a knock on effect of faults on the chillers.

Pump Sets

As above with chiller lead/ lag change over, water system pumps are manually changed over from lead to lag in the building controls. Carrying out this procedure reduces the chance of pump failure between visits. This is because it balances the pump run hours and so prevents bearing seizure after a long period not running.

0161 370 7193

service@maximuschillers.com

Contact Form

Flooded Evaporators

Flooded evaporators are the reverse of the above DX evaporators. The refrigerant is on the outside of the tubes, with water on the inside of the tubes. Gravity and refrigerant charge determine the refrigerant level in the condenser and evaporator. In between the two is located the liquid pipe with the orifice located in the pipe for the expansion of the refrigerant. The cooling water flows through the condenser tubes and off to the cooling towers. On the low side, the chilled water flows through the evaporator tubes and off to the process, or the cooling of facilities.

The parts of the maintenance schedule that relate to flooded evaporators are:

Tube Fouling

Because the condenser cooling water and chilled water systems are pumped through the pipes, the tubes become dirty over time. This occurs more often on the condenser as the water towers are open to atmosphere. Contaminants from surrounding buildings and factories gets into the water system and thermally insulates the tubes. This thermal insulation reduces the heat exchange through the copper tubes. The knock on effect is higher head pressures and eventually high pressure trip outs.

Specialist Cleaning Equipment

We at Maximus Chillers have in our stores the required equipment to carry out the cleaning of the tubes. Our engineers can attend site and liaise with the onsite engineers as regards the draining, strip down and lift out of the heat exchanger end plates.

Flushing Agents

A water sample is taken from the cooling and chilled water systems. These samples are sent off to our laboratory for analysis. Bacteria can build up in the water system causing slime- this can be rectified with a careful selection of chemical agents. Also, silt can build up- various chemicals are added to positively charge the silt and so carry it around the system to the strainer. Where the issue is caused by rust- an inhibitor can be added to prevent, or slow the oxidization of the steel.

0161 370 7193

service@maximuschillers.com

Contact Form

F-gas Testing of Leaks

The frequency of F-gas leak testing is determined by the size of the plant. This will be detailed in your F-gas file which is kept on site. Another record of this is kept by the chiller company at their registered office. The copies of the periodic leak testing sheets are kept by both parties. These detail the result of the test, refrigerant added to the system, refrigerant removed from the system and the required follow up actions. Some methods of leak detection are:

Visual Inspection

On each visit our engineers remove the coverings of the ends of the condensers and panels. This is to inspect the whole machine for a sign of a leak. Any potential leak is marked for future identification of where it is. A visual inspection will always be backed up with a further diagnosis such as:

Superheat and Subcooling

These readings are taken during a maintenance visit to determine the refrigerant charge of the chillers. The engineer, however, has to bear in mind that the subcooling and superheat readings can read abnormally due other reasons.

Bubble up Leak Spray

Various makes are available from the suppliers. Each engineer having his own preference. We at Maximus Chillers stock leak sprays and a wide selection of other materials.

Electronic Leak Detectors

Fixed

This type of leak detector is installed in the chiller low down in the panel. This is because HFC refrigerant is heavier than air. The leaking refrigerant will tend to pool in the bottom of the various panels around the chiller.

Portable

Each of our engineers carries a portable sniff tester. It comes with an extended tip to get into the most tight and awkward places. The leak detector has a replaceable element inside the unit. It also comes with replaceable tips which can be swapped out periodically. They come with a portable plug socket and transformer to charge the on board batteries after use in the field.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Centrifugal Chiller Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Glycol Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

To read more about chiller expansion valves hit the Tag at the top of the page.

For further reading on chillers and the chiller maintenance schedule- visit Better Bricks | Click Here


Two dark green centrifugal chillers undergoing maintenance in plant room

Centrifugal Chiller Maintenance

At the beginning of the year we completed centrifugal chiller maintenance for one of our customers in America. A last overseas trip for the moment given the current world lockdown. The machines in the photo chill water that is pumped around a university campus.

Centrifugal Chiller Maintenance of Redundant System

The plant has a water cooling shell and tube evaporator and a water cooled shell and tube condenser. It has been designed according to the N+1 principle: N being the amount of cooling required and 1 being that same amount of cooling again. Each chiller has enough capacity to satisfy demand. Given the large size of the campus, this principle was critical to keeping the University functioning should system failure occur. The chiller on the right was the lead chiller on arrival. After taking detailed readings during the maintenance, our engineer switched that chiller over into being the lag chiller and took readings from the chiller on the left. He rotates the lead/ lag of the chillers on each visit to balance the run hours of the compressors.

Volumetric Efficiency

Centrifugal chillers have a lower volumetric efficiency compared with positive displacement compressors such as screws and recips. This is because the impeller does not mechanically compress the refrigerant like a piston in a reciprocating compressor. This kind of compressor relies on centrifugal force to spin the refrigerant off the tip of the impeller and onto the next stage. The refrigerant is then discharged from the compressor.

0161 370 7193

service@maximuschillers.com

Contact Form

Mass Flow Rate

The above is more than compensated for with a high mass flow rate. That is to say: a high volume of refrigerant circulates around the system at its operating density. A large capacity machine is cost effective when considering energy efficiency and centrifugal chiller maintenance costs.

Gantry Crane for Centrifugal Chiller Maintenance

The gantry crane in the picture is available to aid with the lift and shift of the compressor, should compressor failure occur. Maximus Chillers are specialists in the overhaul of centrifugal compressors. We can arrange the lift out, transportation, strip down and reassembly of your compressors. All of our strip downs come with a 12 month warranty to give you peace of mind and confidence in our ability.

Related Articles:
Air Cooled Chiller Planned Maintenance

Water Chiller Maintenance

Process Chiller Maintenance Visit

Chilled Water System Maintenance

Industrial Chiller Maintenance

Air Cooled Chiller Condenser Maintenance

Chiller Maintenance Checklist

Glycol Chiller Maintenance

Planned Preventative Chiller Maintenance

Chiller Maintenance Schedule

Air Cooled Chiller Maintenance

Chiller Maintenance Company

Chilling Plant Maintenance

Preventative Chiller Maintenance

Follow this link to read about centrifugal compressors at The Engineering Mindset | Click Here


Translate